Progress in Partial Differential Equations Asymptotic Profiles, Regularity and Well-Posedness /

Progress in Partial Differential Equations is devoted to modern topics in the theory of partial differential equations. It consists of both original articles and survey papers covering a wide scope of research topics in partial differential equations and their applications. The contributors were par...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Reissig, Michael (Επιμελητής έκδοσης), Ruzhansky, Michael (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Heidelberg : Springer International Publishing : Imprint: Springer, 2013.
Σειρά:Springer Proceedings in Mathematics & Statistics, 44
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04605nam a22005415i 4500
001 978-3-319-00125-8
003 DE-He213
005 20151103122836.0
007 cr nn 008mamaa
008 130331s2013 gw | s |||| 0|eng d
020 |a 9783319001258  |9 978-3-319-00125-8 
024 7 |a 10.1007/978-3-319-00125-8  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
245 1 0 |a Progress in Partial Differential Equations  |h [electronic resource] :  |b Asymptotic Profiles, Regularity and Well-Posedness /  |c edited by Michael Reissig, Michael Ruzhansky. 
264 1 |a Heidelberg :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 |a VIII, 447 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 44 
505 0 |a Preface -- Global Existence and Energy Decay of Solutions for a Nondissipative Wave Equation with a Time-Varying Delay Term -- Non-uniqueness and uniqueness in the Cauchy problem of elliptic and backward-parabolic equations -- On internal regularity of solutions to the initial value problem for the Zakharov–Kuznetsov equation -- Singular semilinear elliptic equations with subquadratic gradient terms -- On the parabolic regime of a hyperbolic equation with weak dissipation: the coercive case -- H¥ well-posedness for degenerate p-evolution models of higher order with time-dependent coefficients -- On the global solvability for semilinear wave equations with smooth time dependent propagation speeds -- Filippov Solutions to Systems of Ordinary Differential Equations with Delta Function Terms as Summands -- Resolvent estimates and scattering problems for Schr¨odinger, Klein-Gordon and wave equations -- On an Optimal Control Problem for the Wave Equation in One Space Dimension Controlled by Third Type Boundary Data -- Critical exponent for the semilinear wave equation with time or space dependent damping -- A note on a class of conservative, well-posed linear control systems -- Recent progress in smoothing estimates for evolution equations -- Differentiability of Inverse Operators -- Quasi-symmetrizer and hyperbolic equations -- Solution of the Cauchy problem for generalized Euler-Poisson-Darboux equation by the method of fractional integrals -- Global Solutions of Semilinear System of Klein-Gordon Equations in de Sitter Spacetime. 
520 |a Progress in Partial Differential Equations is devoted to modern topics in the theory of partial differential equations. It consists of both original articles and survey papers covering a wide scope of research topics in partial differential equations and their applications. The contributors were participants of the 8th ISAAC congress in Moscow in 2011 or are members of the PDE interest group of the ISAAC society. This volume is addressed to graduate students at various levels as well as researchers in partial differential equations and related fields. The reader will find this an excellent resource of both introductory and advanced material. The key topics are: • Linear hyperbolic equations and systems (scattering, symmetrisers) • Non-linear wave models (global existence, decay estimates, blow-up) • Evolution equations (control theory, well-posedness, smoothing) • Elliptic equations (uniqueness, non-uniqueness, positive solutions) • Special models from applications (Kirchhoff equation, Zakharov-Kuznetsov equation, thermoelasticity). 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Differential equations. 
650 0 |a Partial differential equations. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
650 2 4 |a Mathematical Physics. 
700 1 |a Reissig, Michael.  |e editor. 
700 1 |a Ruzhansky, Michael.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319001241 
830 0 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 44 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-00125-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)