Hypoelliptic Laplacian and Bott–Chern Cohomology A Theorem of Riemann–Roch–Grothendieck in Complex Geometry /
The book provides the proof of a complex geometric version of a well-known result in algebraic geometry: the theorem of Riemann–Roch–Grothendieck for proper submersions. It gives an equality of cohomology classes in Bott–Chern cohomology, which is a refinement for complex manifolds of de Rham cohomo...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Heidelberg :
Springer International Publishing : Imprint: Birkhäuser,
2013.
|
Σειρά: | Progress in Mathematics ;
305 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction
- 1 The Riemannian adiabatic limit
- 2 The holomorphic adiabatic limit
- 3 The elliptic superconnections
- 4 The elliptic superconnection forms
- 5 The elliptic superconnections forms
- 6 The hypoelliptic superconnections
- 7 The hypoelliptic superconnection forms
- 8 The hypoelliptic superconnection forms of vector bundles
- 9 The hypoelliptic superconnection forms
- 10 The exotic superconnection forms of a vector bundle
- 11 Exotic superconnections and Riemann–Roch–Grothendieck
- Bibliography
- Subject Index
- Index of Notation. .