Hypoelliptic Laplacian and Bott–Chern Cohomology A Theorem of Riemann–Roch–Grothendieck in Complex Geometry /

The book provides the proof of a complex geometric version of a well-known result in algebraic geometry: the theorem of Riemann–Roch–Grothendieck for proper submersions. It gives an equality of cohomology classes in Bott–Chern cohomology, which is a refinement for complex manifolds of de Rham cohomo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bismut, Jean-Michel (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Heidelberg : Springer International Publishing : Imprint: Birkhäuser, 2013.
Σειρά:Progress in Mathematics ; 305
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction
  • 1 The Riemannian adiabatic limit
  • 2 The holomorphic adiabatic limit
  • 3 The elliptic superconnections
  • 4 The elliptic superconnection forms
  • 5 The elliptic superconnections forms
  • 6 The hypoelliptic superconnections
  • 7 The hypoelliptic superconnection forms
  • 8 The hypoelliptic superconnection forms of vector bundles
  • 9 The hypoelliptic superconnection forms
  • 10 The exotic superconnection forms of a vector bundle
  • 11 Exotic superconnections and Riemann–Roch–Grothendieck
  • Bibliography
  • Subject Index
  • Index of Notation.  .