The Classification of the Virtually Cyclic Subgroups of the Sphere Braid Groups

This manuscript is devoted to classifying the isomorphism classes of the virtually cyclic subgroups of the braid groups of the 2-sphere. As well as enabling us to understand better the global structure of these groups, it marks an important step in the computation of the K-theory of their group ring...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Lima Goncalves, Daciberg (Συγγραφέας), Guaschi, John (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2013.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02938nam a22004935i 4500
001 978-3-319-00257-6
003 DE-He213
005 20130913030803.0
007 cr nn 008mamaa
008 130907s2013 gw | s |||| 0|eng d
020 |a 9783319002576  |9 978-3-319-00257-6 
024 7 |a 10.1007/978-3-319-00257-6  |2 doi 
040 |d GrThAP 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.2  |2 23 
100 1 |a Lima Goncalves, Daciberg.  |e author. 
245 1 4 |a The Classification of the Virtually Cyclic Subgroups of the Sphere Braid Groups  |h [electronic resource] /  |c by Daciberg Lima Goncalves, John Guaschi. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 |a X, 102 p. 26 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a Introduction and statement of the main results -- Virtually cyclic groups: generalities, reduction and the mapping class group -- Realisation of the elements of V1(n) and V2(n) in Bn(S2) -- Appendix: The subgroups of the binary polyhedral groups -- References.                                        . 
520 |a This manuscript is devoted to classifying the isomorphism classes of the virtually cyclic subgroups of the braid groups of the 2-sphere. As well as enabling us to understand better the global structure of these groups, it marks an important step in the computation of the K-theory of their group rings. The classification itself is somewhat intricate, due to the rich structure of the finite subgroups of these braid groups, and is achieved by an in-depth analysis of their group-theoretical and topological properties, such as their centralisers, normalisers and cohomological periodicity. Another important aspect of our work is the close relationship of the braid groups with mapping class groups. This manuscript will serve as a reference for the study of braid groups of low-genus surfaces, and isaddressed to graduate students and researchers in low-dimensional, geometric and algebraic topology and in algebra. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Group theory. 
650 0 |a Algebraic topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Algebra. 
700 1 |a Guaschi, John.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319002569 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-00257-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)