Structural Additive Theory

Nestled between number theory, combinatorics, algebra, and analysis lies a rapidly developing subject in mathematics variously known as additive combinatorics, additive number theory, additive group theory, and combinatorial number theory. Its main objects of study are not abelian groups themselves,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Grynkiewicz, David J. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Heidelberg : Springer International Publishing : Imprint: Springer, 2013.
Σειρά:Developments in Mathematics, 30
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04344nam a22004935i 4500
001 978-3-319-00416-7
003 DE-He213
005 20151103123111.0
007 cr nn 008mamaa
008 130531s2013 gw | s |||| 0|eng d
020 |a 9783319004167  |9 978-3-319-00416-7 
024 7 |a 10.1007/978-3-319-00416-7  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Grynkiewicz, David J.  |e author. 
245 1 0 |a Structural Additive Theory  |h [electronic resource] /  |c by David J. Grynkiewicz. 
264 1 |a Heidelberg :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 426 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Developments in Mathematics,  |x 1389-2177 ;  |v 30 
505 0 |a 1. Abelian Groups and Character Sums -- 2. Introduction to Sumsets -- 3. Simple Results for Torsion-Free Abelian Groups -- 4. Basic Results for Sumsets with an Infinite Summand -- 5. The Pigeonhole and Multiplicity Bounds -- 6. Periodic Sets and Kneser's Theorem -- 7. Compression, Complements and the 3k–4 Theorem -- 8. Additive Energy -- 9. Kemperman's Critical Pair Theory -- 10. Zero-Sums, Setpartitions and Subsequence Sums -- 11. Long Zero-Sum Free Sequences over Cyclic Groups -- 12. Pollard's Theorem for General Abelian Groups -- 13. The DeVos–Goddyn–Mohar Theorem -- 14. The Partition Theorem I -- 15. The Partition Theorem II -- 16. The Ψ-Weighted Gao Theorem -- 17. Group Algebras -- 18. Character and Linear Algebraic Methods -- 19. Character Sum and Fourier Analytic Methods -- 20. Freiman Homomorphisms Revisited -- 21. The Isoperimetric Method -- 22. The Polynomial Method -- Index. 
520 |a Nestled between number theory, combinatorics, algebra, and analysis lies a rapidly developing subject in mathematics variously known as additive combinatorics, additive number theory, additive group theory, and combinatorial number theory. Its main objects of study are not abelian groups themselves, but rather the additive structure of subsets and subsequences of an abelian group, i.e. sumsets and subsequence sums. This text is a hybrid of a research monograph and an introductory graduate textbook. With few exceptions, all results presented are self-contained, written in great detail, and only reliant upon material covered in an advanced undergraduate curriculum supplemented with some additional Algebra, rendering this book usable as an entry-level text. However, it will perhaps be of even more interest to researchers already in the field. The majority of material is not found in book form and includes many new results as well. Even classical results, when included, are given in greater generality or using new proof variations. The text has a particular focus on results of a more exact and precise nature, results with strong hypotheses and yet stronger conclusions, and on fundamental aspects of the theory. Also included are intricate results often neglected in other texts owing to their complexity. Highlights include an extensive treatment of Freiman Homomorphisms and the Universal Ambient Group of sumsets A+B, an entire chapter devoted to Hamidoune’s Isoperimetric Method, a novel generalization allowing infinite summands in finite sumset questions, weighted zero-sum problems treated in the general context of viewing homomorphisms as weights, and simplified proofs of the Kemperman Structure Theorem and the Partition Theorem for setpartitions.  . 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Ordered algebraic structures. 
650 0 |a Sequences (Mathematics). 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Sequences, Series, Summability. 
650 2 4 |a Order, Lattices, Ordered Algebraic Structures. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319004150 
830 0 |a Developments in Mathematics,  |x 1389-2177 ;  |v 30 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-00416-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)