Social Web Artifacts for Boosting Recommenders Theory and Implementation /

Recommender systems, software programs that learn from human behavior and make predictions of what products we are expected to appreciate and purchase, have become an integral part of our everyday life. They proliferate across electronic commerce around the globe and exist for virtually all sorts of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ziegler, Cai-Nicolas (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2013.
Σειρά:Studies in Computational Intelligence, 487
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03184nam a22004815i 4500
001 978-3-319-00527-0
003 DE-He213
005 20151030051013.0
007 cr nn 008mamaa
008 130424s2013 gw | s |||| 0|eng d
020 |a 9783319005270  |9 978-3-319-00527-0 
024 7 |a 10.1007/978-3-319-00527-0  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Ziegler, Cai-Nicolas.  |e author. 
245 1 0 |a Social Web Artifacts for Boosting Recommenders  |h [electronic resource] :  |b Theory and Implementation /  |c by Cai-Nicolas Ziegler. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 |a XIX, 187 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 487 
505 0 |a Part I Laying Foundations -- Part II Use of Taxonomic Knowledge -- Part III Social Ties and Trust -- Part IV Amalgamating Taxonomies and Trust. 
520 |a Recommender systems, software programs that learn from human behavior and make predictions of what products we are expected to appreciate and purchase, have become an integral part of our everyday life. They proliferate across electronic commerce around the globe and exist for virtually all sorts of consumable goods, such as books, movies, music, or clothes. At the same time, a new evolution on the Web has started to take shape, commonly known as the “Web 2.0” or the “Social Web”: Consumer-generated media has become rife, social networks have emerged and are pulling significant shares of Web traffic. In line with these developments, novel information and knowledge artifacts have become readily available on the Web, created by the collective effort of millions of people. This textbook presents approaches to exploit the new Social Web fountain of knowledge, zeroing in first and foremost on two of those information artifacts, namely classification taxonomies and trust networks. These two are used to improve the performance of product-focused recommender systems: While classification taxonomies are appropriate means to fight the sparsity problem prevalent in many productive recommender systems, interpersonal trust ties – when used as proxies for interest similarity – are able to mitigate the recommenders' scalability problem. 
650 0 |a Engineering. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Data Mining and Knowledge Discovery. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319005263 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 487 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-00527-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)