Methods of Solving Complex Geometry Problems

This book is a unique collection of challenging geometry problems and detailed solutions that will build students’ confidence in mathematics. By proposing several methods to approach each problem and emphasizing geometry’s connections with different fields of mathematics, Methods of Solving Complex...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Grigorieva, Ellina (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03324nam a22004335i 4500
001 978-3-319-00705-2
003 DE-He213
005 20151204172214.0
007 cr nn 008mamaa
008 130806s2013 gw | s |||| 0|eng d
020 |a 9783319007052  |9 978-3-319-00705-2 
024 7 |a 10.1007/978-3-319-00705-2  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
100 1 |a Grigorieva, Ellina.  |e author. 
245 1 0 |a Methods of Solving Complex Geometry Problems  |h [electronic resource] /  |c by Ellina Grigorieva. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2013. 
300 |a XVI, 234 p. 201 illus., 191 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1 Problems Involving Triangles -- 2 Quadrilaterals and other Polygons -- 3 Problems Involving Circles -- 4 Problems on Construction -- Appendix A Ratios and Proportion -- Appendix B My 9th Grade Notebook Page -- Appendix C My Pictures -- References -- Index.     . 
520 |a This book is a unique collection of challenging geometry problems and detailed solutions that will build students’ confidence in mathematics. By proposing several methods to approach each problem and emphasizing geometry’s connections with different fields of mathematics, Methods of Solving Complex Geometry Problems serves as a bridge to more advanced problem solving.  Written by an accomplished female mathematician who struggled with geometry as a child, it does not intimidate, but instead fosters the reader’s ability to solve math problems through the direct application of theorems.   Containing over 160 complex problems with hints and detailed solutions, Methods of Solving Complex Geometry Problems can be used as a self-study guide for mathematics competitions and for improving problem-solving skills in courses on plane geometry or the history of mathematics. It contains important and sometimes overlooked topics on triangles, quadrilaterals, and circles such as the Menelaus-Ceva theorem, Simson’s line, Heron’s formula, and the theorems of the three altitudes and medians. It can also be used by professors as a resource to stimulate the abstract thinking required to transcend the tedious and routine, bringing forth the original thought of which their students are capable.   Methods of Solving Complex Geometry Problems will interest high school and college students needing to prepare for exams and competitions, as well as anyone who enjoys an intellectual challenge and has a special love of geometry. It will also appeal to instructors of geometry, history of mathematics, and math education courses. 
650 0 |a Mathematics. 
650 0 |a Geometry. 
650 0 |a History. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a History of Mathematical Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319007045 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-00705-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)