Electrohydrodynamic Patterning of Functional Materials

This thesis explores a route to induce and control the structure formation process in thin films by the use of strong electric fields. We investigate, establish and apply the use of the electrohydrodynamic (EHD) lithography as a versatile patterning tool on the sub-micrometre and nanometre length sc...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Oppenheimer, Pola Goldberg (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Heidelberg : Springer International Publishing : Imprint: Springer, 2013.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04255nam a22006015i 4500
001 978-3-319-00783-0
003 DE-He213
005 20151218081049.0
007 cr nn 008mamaa
008 130723s2013 gw | s |||| 0|eng d
020 |a 9783319007830  |9 978-3-319-00783-0 
024 7 |a 10.1007/978-3-319-00783-0  |2 doi 
040 |d GrThAP 
050 4 |a TA418.7-418.76 
050 4 |a TA418.9.T45 
072 7 |a TGM  |2 bicssc 
072 7 |a PNRX  |2 bicssc 
072 7 |a TEC021000  |2 bisacsh 
082 0 4 |a 620.44  |2 23 
100 1 |a Oppenheimer, Pola Goldberg.  |e author. 
245 1 0 |a Electrohydrodynamic Patterning of Functional Materials  |h [electronic resource] /  |c by Pola Goldberg Oppenheimer. 
264 1 |a Heidelberg :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 |a XVIII, 137 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Theoretical Background and Physical Principles of EHD Instabilities -- Experimental Tools and Analytical Techniques -- Rapid Patterning of Low-Viscosity Resists Using Electrohydrodynamic Lithography -- Alignment of Carbon Nanotubes via EHD-Driven Patterning of Nanocomposites -- Hierarchical EHD Structures for Surface-Enhanced Raman Scattering -- Patterning of Crystalline Organic Materials via EHL -- Electrohydrodynamic Lithography of a Conducting Polymer -- Structural Hierarchy of Functional Block Copolymer System Induced by Electrohydrodynamic Lithography. 
520 |a This thesis explores a route to induce and control the structure formation process in thin films by the use of strong electric fields. We investigate, establish and apply the use of the electrohydrodynamic (EHD) lithography as a versatile patterning tool on the sub-micrometre and nanometre length scales for functional materials. Thin films are ubiquitous, they are found in nature and used in almost every aspect of daily life. While film instabilities are often undesirable in nature and technology, they can be utilized to produce structures by precisely controlling the destabilization of the film. EHD lithography utilizes instabilities induced by means of an electric field to fabricate periodic structures. EHD patterning is set to become a competitive candidate for low-cost lithographic technology for a number of applications. Herein, the applied potential of this lithographic process is explored by expanding its applicability to a broad range of materials and by a simultaneous patterning of multilayer systems or functional polymers yielding hierarchical architectures with novel functionalities. EHD pattern formation enables for instance, the fabrication of multi-scale structured arrays as surface enhanced Raman scattering (SERS)-active platforms. Furthermore, crystalline and conductive polymers are patterned using the EHD approach and the underlying structure formation mechanisms are discussed. This extension towards functional material systems offers interesting prospects for potential applications. Findings of this thesis are very promising for use in optoelectronic devices. 
650 0 |a Materials science. 
650 0 |a Polymers. 
650 0 |a Surfaces (Physics). 
650 0 |a Interfaces (Physical sciences). 
650 0 |a Thin films. 
650 0 |a Optics. 
650 0 |a Optoelectronics. 
650 0 |a Plasmons (Physics). 
650 0 |a Nanotechnology. 
650 0 |a Materials  |x Surfaces. 
650 1 4 |a Materials Science. 
650 2 4 |a Surfaces and Interfaces, Thin Films. 
650 2 4 |a Surface and Interface Science, Thin Films. 
650 2 4 |a Nanotechnology. 
650 2 4 |a Polymer Sciences. 
650 2 4 |a Optics, Optoelectronics, Plasmonics and Optical Devices. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319007823 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-00783-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-CMS 
950 |a Chemistry and Materials Science (Springer-11644)