An Introduction to the Kähler-Ricci Flow

This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there h...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Boucksom, Sebastien (Επιμελητής έκδοσης), Eyssidieux, Philippe (Επιμελητής έκδοσης), Guedj, Vincent (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2013.
Σειρά:Lecture Notes in Mathematics, 2086
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03375nam a22005175i 4500
001 978-3-319-00819-6
003 DE-He213
005 20151030091312.0
007 cr nn 008mamaa
008 131001s2013 gw | s |||| 0|eng d
020 |a 9783319008196  |9 978-3-319-00819-6 
024 7 |a 10.1007/978-3-319-00819-6  |2 doi 
040 |d GrThAP 
050 4 |a QA331.7 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.94  |2 23 
245 1 3 |a An Introduction to the Kähler-Ricci Flow  |h [electronic resource] /  |c edited by Sebastien Boucksom, Philippe Eyssidieux, Vincent Guedj. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 |a VIII, 333 p. 10 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2086 
505 0 |a The (real) theory of fully non linear parabolic equations -- The KRF on positive Kodaira dimension Kähler manifolds -- The normalized Kähler-Ricci flow on Fano manifolds -- Bibliography. 
520 |a This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research.   The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman’s celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman’s surgeries. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Functions of complex variables. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Differential Geometry. 
700 1 |a Boucksom, Sebastien.  |e editor. 
700 1 |a Eyssidieux, Philippe.  |e editor. 
700 1 |a Guedj, Vincent.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319008189 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2086 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-00819-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)