Robustness in Statistical Forecasting

Traditional procedures in the statistical forecasting of time series, which are proved to be optimal under the hypothetical model, are often not robust under relatively small distortions (misspecification, outliers, missing values, etc.), leading to actual forecast risks (mean square errors of predi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kharin, Yuriy (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03280nam a22004815i 4500
001 978-3-319-00840-0
003 DE-He213
005 20151204180001.0
007 cr nn 008mamaa
008 130903s2013 gw | s |||| 0|eng d
020 |a 9783319008400  |9 978-3-319-00840-0 
024 7 |a 10.1007/978-3-319-00840-0  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Kharin, Yuriy.  |e author. 
245 1 0 |a Robustness in Statistical Forecasting  |h [electronic resource] /  |c by Yuriy Kharin. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 |a XVI, 356 p. 47 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Symbols and Abbreviations -- Introduction -- A Decision-Theoretic Approach to Forecasting -- Time Series Models of Statistical Forecasting -- Performance and Robustness Characteristics in Statistical Forecasting -- Forecasting under Regression Models of Time Series -- Robustness of Time Series Forecasting Based on Regression Models -- Optimality and Robustness of ARIMA Forecasting -- Optimality and Robustness of Vector Autoregression Forecasting under Missing Values -- Robustness of Multivariate Time Series Forecasting Based on Systems of Simultaneous Equations -- Forecasting of Discrete Time Series -- Index. 
520 |a Traditional procedures in the statistical forecasting of time series, which are proved to be optimal under the hypothetical model, are often not robust under relatively small distortions (misspecification, outliers, missing values, etc.), leading to actual forecast risks (mean square errors of prediction) that are much higher than the theoretical values. This monograph fills a gap in the literature on robustness in statistical forecasting, offering solutions to the following topical problems: - developing mathematical models and descriptions of typical distortions in applied forecasting problems; - evaluating the robustness for traditional forecasting procedures under distortions; - obtaining the maximal distortion levels that allow the “safe” use of the traditional forecasting algorithms; - creating new robust forecasting procedures to arrive at risks that are less sensitive to definite distortion types.      . 
650 0 |a Statistics. 
650 0 |a Probabilities. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319008394 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-00840-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)