Robustness in Statistical Forecasting

Traditional procedures in the statistical forecasting of time series, which are proved to be optimal under the hypothetical model, are often not robust under relatively small distortions (misspecification, outliers, missing values, etc.), leading to actual forecast risks (mean square errors of predi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kharin, Yuriy (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Preface
  • Symbols and Abbreviations
  • Introduction
  • A Decision-Theoretic Approach to Forecasting
  • Time Series Models of Statistical Forecasting
  • Performance and Robustness Characteristics in Statistical Forecasting
  • Forecasting under Regression Models of Time Series
  • Robustness of Time Series Forecasting Based on Regression Models
  • Optimality and Robustness of ARIMA Forecasting
  • Optimality and Robustness of Vector Autoregression Forecasting under Missing Values
  • Robustness of Multivariate Time Series Forecasting Based on Systems of Simultaneous Equations
  • Forecasting of Discrete Time Series
  • Index.