Integral Transform Techniques for Green's Function

In this book mathematical techniques for integral transforms are described in detail but concisely. The techniques are applied to the standard partial differential equations, such as the Laplace equation, the wave equation and elasticity equations. The Green's functions for beams, plates and ac...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Watanabe, Kazumi (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Lecture Notes in Applied and Computational Mechanics, 71
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02718nam a22005295i 4500
001 978-3-319-00879-0
003 DE-He213
005 20151031091015.0
007 cr nn 008mamaa
008 130811s2014 gw | s |||| 0|eng d
020 |a 9783319008790  |9 978-3-319-00879-0 
024 7 |a 10.1007/978-3-319-00879-0  |2 doi 
040 |d GrThAP 
050 4 |a TA329-348 
050 4 |a TA640-643 
072 7 |a TBJ  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Watanabe, Kazumi.  |e author. 
245 1 0 |a Integral Transform Techniques for Green's Function  |h [electronic resource] /  |c by Kazumi Watanabe. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XII, 190 p. 34 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Applied and Computational Mechanics,  |x 1613-7736 ;  |v 71 
505 0 |a Definition of integral transforms and distributions -- Green's functions for Laplace and wave equations -- Green's dyadic for an isotropic elastic solid -- Acoustic wave in an uniform flow -- Green's functions for beam and plate -- Cagniard de Hoop technique -- Miscellaneous Green's functions -- Exercises. 
520 |a In this book mathematical techniques for integral transforms are described in detail but concisely. The techniques are applied to the standard partial differential equations, such as the Laplace equation, the wave equation and elasticity equations. The Green's functions for beams, plates and acoustic media are also shown along with their mathematical derivations. Lists of Green's functions are presented for the future use. The Cagniard's-de Hoop method for the double inversion is described in detail, and 2D and 3D elasto-dynamics problems are fully treated. 
650 0 |a Engineering. 
650 0 |a Integral transforms. 
650 0 |a Operational calculus. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 1 4 |a Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Theoretical and Applied Mechanics. 
650 2 4 |a Integral Transforms, Operational Calculus. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319008783 
830 0 |a Lecture Notes in Applied and Computational Mechanics,  |x 1613-7736 ;  |v 71 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-00879-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)