Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow

The theory of incompressible multipolar viscous fluids is a non-Newtonian model of fluid flow, which incorporates nonlinear viscosity, as well as higher order velocity gradients, and is based on scientific first principles. The Navier-Stokes model of fluid flow is based on the Stokes hypothesis, whi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bellout, Hamid (Συγγραφέας), Bloom, Frederick (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2014.
Σειρά:Advances in Mathematical Fluid Mechanics
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04396nam a22005055i 4500
001 978-3-319-00891-2
003 DE-He213
005 20151031101022.0
007 cr nn 008mamaa
008 131113s2014 gw | s |||| 0|eng d
020 |a 9783319008912  |9 978-3-319-00891-2 
024 7 |a 10.1007/978-3-319-00891-2  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Bellout, Hamid.  |e author. 
245 1 0 |a Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow  |h [electronic resource] /  |c by Hamid Bellout, Frederick Bloom. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a XX, 569 p. 16 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Mathematical Fluid Mechanics 
505 0 |a Preface -- Acknowledgements -- I Incompressible Multipolar Fluid Dynamics -- II Plane Poiseuille Flow of Incompressible Bipolar Viscous Fluids -- III Incompressible Bipolar Fluid Dynamics: Examples of Other Flows and Geometries -- IV General Existence and Uniqueness Theorems for Incompressible Bipolar and non-Newtonian Fluid Flow -- V Attractors for Incompressible Bipolar and non-Newtonian Flows: Bounded Domains and Space Periodic Problems -- VI Inertial Manifolds, Orbit Squeezing, and Attractors for Bipolar Flow in Unbounded Channels -- A.I Notation, Definitions, and Results from Analysis -- A.II Estimates Involving the Rate of Deformation Tensor -- A.III The Spectral Gap Condition -- Bibliography -- Index. 
520 |a The theory of incompressible multipolar viscous fluids is a non-Newtonian model of fluid flow, which incorporates nonlinear viscosity, as well as higher order velocity gradients, and is based on scientific first principles. The Navier-Stokes model of fluid flow is based on the Stokes hypothesis, which a priori simplifies and restricts the relationship between the stress tensor and the velocity. By relaxing the constraints of the Stokes hypothesis, the mathematical theory of multipolar viscous fluids generalizes the standard Navier-Stokes model. The rigorous theory of multipolar viscous fluids  is compatible with all known thermodynamical processes and the principle of material frame indifference; this is in contrast with the formulation of most non-Newtonian fluid flow models which result from ad hoc assumptions about the relation between the stress tensor and the velocity. The higher-order boundary conditions, which must be formulated for multipolar viscous flow problems, are a rigorous consequence of the principle of virtual work; this is in stark contrast to the approach employed by authors who have studied the regularizing effects of adding artificial viscosity, in the form of higher order spatial derivatives, to the Navier-Stokes model.   A number of research groups, primarily in the United States, Germany, Eastern Europe, and China, have explored the consequences of multipolar viscous fluid models; these efforts, and those of the authors, which are described in this book, have focused on the solution of problems in the context of specific geometries, on the existence of weak and classical solutions, and on dynamical systems aspects of the theory.   This volume will be a valuable resource for mathematicians interested in solutions to systems of nonlinear partial differential equations, as well as to applied mathematicians, fluid dynamicists, and mechanical engineers with an interest in the problems of fluid mechanics. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Mathematical physics. 
650 0 |a Fluids. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Fluid- and Aerodynamics. 
700 1 |a Bloom, Frederick.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319008905 
830 0 |a Advances in Mathematical Fluid Mechanics 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-00891-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)