Analysis of Variations for Self-similar Processes A Stochastic Calculus Approach /

Self-similar processes are stochastic processes that are invariant in distribution under suitable time scaling, and are a subject intensively studied in the last few decades. This book presents the basic properties of these processes and focuses on the study of their variation using stochastic analy...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Tudor, Ciprian (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2013.
Σειρά:Probability and Its Applications,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03464nam a22004815i 4500
001 978-3-319-00936-0
003 DE-He213
005 20151218121842.0
007 cr nn 008mamaa
008 130805s2013 gw | s |||| 0|eng d
020 |a 9783319009360  |9 978-3-319-00936-0 
024 7 |a 10.1007/978-3-319-00936-0  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Tudor, Ciprian.  |e author. 
245 1 0 |a Analysis of Variations for Self-similar Processes  |h [electronic resource] :  |b A Stochastic Calculus Approach /  |c by Ciprian Tudor. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 |a XI, 268 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Probability and Its Applications,  |x 1431-7028 
505 0 |a Preface -- Introduction -- Part I Examples of Self-Similar Processes -- 1.Fractional Brownian Motion and Related Processes -- 2.Solutions to the Linear Stochastic Heat and Wave Equation -- 3.Non Gaussian Self-Similar Processes -- 4.Multiparameter Gaussian Processes -- Part II Variations of Self-Similar Process: Central and Non-Central Limit Theorems -- 5.First and Second Order Quadratic Variations. Wavelet-Type Variations -- 6.Hermite Variations for Self-Similar Processes -- Appendices: A.Self-Similar Processes with Stationary Increments: Basic Properties -- B.Kolmogorov Continuity Theorem -- C.Multiple Wiener Integrals and Malliavin Derivatives -- References -- Index. 
520 |a Self-similar processes are stochastic processes that are invariant in distribution under suitable time scaling, and are a subject intensively studied in the last few decades. This book presents the basic properties of these processes and focuses on the study of their variation using stochastic analysis. While self-similar processes, and especially fractional Brownian motion, have been discussed in several books, some new classes have recently emerged in the scientific literature.  Some of them are extensions of fractional Brownian motion (bifractional Brownian motion, subtractional Brownian motion, Hermite processes), while others are solutions to the partial differential equations driven by fractional noises. In this monograph the author discusses the basic properties of these new classes of  self-similar processes and their interrrelationship. At the same time a new approach (based on stochastic calculus, especially Malliavin calculus) to studying the behavior of the variations of self-similar processes has been developed over the last decade. This work surveys these recent techniques and findings on limit theorems and Malliavin calculus. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 0 |a Statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistics, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319009353 
830 0 |a Probability and Its Applications,  |x 1431-7028 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-00936-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)