Meta-Learning in Decision Tree Induction

The book focuses on different variants of decision tree induction but also describes  the meta-learning approach in general which is applicable to other types of machine learning algorithms. The book discusses different variants of decision tree induction and represents a useful source of informatio...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Grąbczewski, Krzysztof (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Studies in Computational Intelligence, 498
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03397nam a22004575i 4500
001 978-3-319-00960-5
003 DE-He213
005 20151103123240.0
007 cr nn 008mamaa
008 130911s2014 gw | s |||| 0|eng d
020 |a 9783319009605  |9 978-3-319-00960-5 
024 7 |a 10.1007/978-3-319-00960-5  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Grąbczewski, Krzysztof.  |e author. 
245 1 0 |a Meta-Learning in Decision Tree Induction  |h [electronic resource] /  |c by Krzysztof Grąbczewski. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XVI, 343 p. 33 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 498 
505 0 |a Introduction -- Techniques of decision tree induction -- Multivariate decision trees -- Unified view of decision tree induction algorithms -- Intemi—advanced meta-learning framework -- Meta-level analysis of decision tree induction. 
520 |a The book focuses on different variants of decision tree induction but also describes  the meta-learning approach in general which is applicable to other types of machine learning algorithms. The book discusses different variants of decision tree induction and represents a useful source of information to readers wishing to review some of the techniques used in decision tree learning, as well as different ensemble methods that involve decision trees. It is shown that the knowledge of different components used within decision tree learning needs to be systematized to enable the system to generate and evaluate different variants of machine learning algorithms with the aim of identifying the top-most performers or potentially the best one. A unified view of decision tree learning enables to emulate different decision tree algorithms simply by setting certain parameters. As meta-learning requires running many different processes with the aim of obtaining performance results, a detailed description of the experimental methodology and evaluation framework is provided. Meta-learning is discussed in great detail in the second half of the book. The exposition starts by presenting a comprehensive review of many meta-learning approaches explored in the past described in literature, including for instance approaches that provide a ranking of algorithms. The approach described can be related to other work that exploits planning whose aim is to construct data mining workflows. The book stimulates interchange of ideas between different, albeit related, approaches.  . 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319009599 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 498 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-00960-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)