Structure of Approximate Solutions of Optimal Control Problems

This title examines the structure of approximate solutions of optimal control problems considered on subintervals of a real line. Specifically at the properties of approximate solutions which are independent of the length of the interval. The results illustrated in this book look into the so-called...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Zaslavski, Alexander J. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2013.
Σειρά:SpringerBriefs in Optimization,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03134nam a22005535i 4500
001 978-3-319-01240-7
003 DE-He213
005 20151030021227.0
007 cr nn 008mamaa
008 130804s2013 gw | s |||| 0|eng d
020 |a 9783319012407  |9 978-3-319-01240-7 
024 7 |a 10.1007/978-3-319-01240-7  |2 doi 
040 |d GrThAP 
050 4 |a QA315-316 
050 4 |a QA402.3 
050 4 |a QA402.5-QA402.6 
072 7 |a PBKQ  |2 bicssc 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 |a Zaslavski, Alexander J.  |e author. 
245 1 0 |a Structure of Approximate Solutions of Optimal Control Problems  |h [electronic resource] /  |c by Alexander J. Zaslavski. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 |a VII, 135 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Optimization,  |x 2190-8354 
505 0 |a Preface -- 1.Introduction -- 2.Turnpike Properties of Optimal Control Problems -- 3.Infinite Horizon Problems -- 4.Linear Control Systems -- References.  . 
520 |a This title examines the structure of approximate solutions of optimal control problems considered on subintervals of a real line. Specifically at the properties of approximate solutions which are independent of the length of the interval. The results illustrated in this book look into the so-called turnpike property of optimal control problems.  The author generalizes the results of the turnpike property by considering  a class of optimal control problems which is identified with the corresponding complete metric space of objective functions. This establishes the turnpike property for any element in a set that is in a countable intersection which is open everywhere dense sets in the space of integrands; meaning that the turnpike property holds for most optimal control problems. Mathematicians working in optimal control and the calculus of variations and graduate students will find this book  useful and valuable due to its  presentation of solutions to a number of difficult problems in optimal control  and presentation of new approaches, techniques and methods. 
650 0 |a Mathematics. 
650 0 |a Game theory. 
650 0 |a System theory. 
650 0 |a Calculus of variations. 
650 0 |a Mathematical optimization. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Game Theory, Economics, Social and Behav. Sciences. 
650 2 4 |a Continuous Optimization. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319012391 
830 0 |a SpringerBriefs in Optimization,  |x 2190-8354 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-01240-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)