Invariance Entropy for Deterministic Control Systems An Introduction /

This monograph provides an introduction to the concept of invariance entropy, the central motivation of which lies in the need to deal with communication constraints in networked control systems. For the simplest possible network topology, consisting of one controller and one dynamical system connec...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kawan, Christoph (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2013.
Σειρά:Lecture Notes in Mathematics, 2089
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02991nam a22004935i 4500
001 978-3-319-01288-9
003 DE-He213
005 20151123195544.0
007 cr nn 008mamaa
008 131001s2013 gw | s |||| 0|eng d
020 |a 9783319012889  |9 978-3-319-01288-9 
024 7 |a 10.1007/978-3-319-01288-9  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Kawan, Christoph.  |e author. 
245 1 0 |a Invariance Entropy for Deterministic Control Systems  |h [electronic resource] :  |b An Introduction /  |c by Christoph Kawan. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 |a XXII, 270 p. 2 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2089 
505 0 |a Basic Properties of Control Systems -- Introduction to Invariance Entropy -- Linear and Bilinear Systems -- General Estimates -- Controllability, Lyapunov Exponents, and Upper Bounds -- Escape Rates and Lower Bounds -- Examples -- Notation -- Bibliography -- Index. 
520 |a This monograph provides an introduction to the concept of invariance entropy, the central motivation of which lies in the need to deal with communication constraints in networked control systems. For the simplest possible network topology, consisting of one controller and one dynamical system connected by a digital channel, invariance entropy provides a measure for the smallest data rate above which it is possible to render a given subset of the state space invariant by means of a symbolic coder-controller pair. This concept is essentially equivalent to the notion of topological feedback entropy introduced by Nair, Evans, Mareels and Moran (Topological feedback entropy and nonlinear stabilization. IEEE Trans. Automat. Control 49 (2004), 1585–1597). The book presents the foundations of a theory which aims at finding expressions for invariance entropy in terms of dynamical quantities such as Lyapunov exponents. While both discrete-time and continuous-time systems are treated, the emphasis lies on systems given by differential equations. 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a System theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Systems Theory, Control. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319012872 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2089 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-01288-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)