Realtime Data Mining Self-Learning Techniques for Recommendation Engines /

Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Paprotny, Alexander (Συγγραφέας), Thess, Michael (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2013.
Σειρά:Applied and Numerical Harmonic Analysis,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04225nam a22005055i 4500
001 978-3-319-01321-3
003 DE-He213
005 20151030031016.0
007 cr nn 008mamaa
008 131203s2013 gw | s |||| 0|eng d
020 |a 9783319013213  |9 978-3-319-01321-3 
024 7 |a 10.1007/978-3-319-01321-3  |2 doi 
040 |d GrThAP 
050 4 |a QA71-90 
072 7 |a PDE  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 004  |2 23 
100 1 |a Paprotny, Alexander.  |e author. 
245 1 0 |a Realtime Data Mining  |h [electronic resource] :  |b Self-Learning Techniques for Recommendation Engines /  |c by Alexander Paprotny, Michael Thess. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2013. 
300 |a XXIII, 313 p. 100 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied and Numerical Harmonic Analysis,  |x 2296-5009 
505 0 |a 1 Brave New Realtime World – Introduction -- 2 Strange Recommendations? – On The Weaknesses Of Current Recommendation Engines -- 3 Changing Not Just Analyzing – Control Theory And Reinforcement Learning -- 4 Recommendations As A Game – Reinforcement Learning For Recommendation Engines -- 5 How Engines Learn To Generate Recommendations – Adaptive Learning Algorithms -- 6 Up The Down Staircase – Hierarchical Reinforcement Learning -- 7 Breaking Dimensions – Adaptive Scoring With Sparse Grids -- 8 Decomposition In Transition - Adaptive Matrix Factorization -- 9 Decomposition In Transition Ii - Adaptive Tensor Factorization -- 10 The Big Picture – Towards A Synthesis Of Rl And Adaptive Tensor Factorization -- 11 What Cannot Be Measured Cannot Be Controlled - Gauging Success With A/B Tests -- 12 Building A Recommendation Engine – The Xelopes Library -- 13 Last Words – Conclusion -- References -- Summary Of Notation. 
520 |a Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore, it presents promising results of numerous experiments on real-world data.  The area of realtime data mining is currently developing at an exceptionally dynamic pace, and realtime data mining systems are the counterpart of today's “classic” data mining systems. Whereas the latter learn from historical data and then use it to deduce necessary actions, realtime analytics systems learn and act continuously and autonomously. In the vanguard of these new analytics systems are recommendation engines. They are principally found on the Internet, where all information is available in realtime and an immediate feedback is guaranteed.   This monograph appeals to computer scientists and specialists in machine learning, especially from the area of recommender systems, because it conveys a new way of realtime thinking by considering recommendation tasks as control-theoretic problems. Realtime Data Mining: Self-Learning Techniques for Recommendation Engines will also interest application-oriented mathematicians because it consistently combines some of the most promising mathematical areas, namely control theory, multilevel approximation, and tensor factorization. 
650 0 |a Mathematics. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Computer software. 
650 1 4 |a Mathematics. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Mathematical Applications in Computer Science. 
650 2 4 |a Mathematical Software. 
700 1 |a Thess, Michael.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319013206 
830 0 |a Applied and Numerical Harmonic Analysis,  |x 2296-5009 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-01321-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)