Realtime Data Mining Self-Learning Techniques for Recommendation Engines /

Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Paprotny, Alexander (Συγγραφέας), Thess, Michael (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2013.
Σειρά:Applied and Numerical Harmonic Analysis,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1 Brave New Realtime World – Introduction
  • 2 Strange Recommendations? – On The Weaknesses Of Current Recommendation Engines
  • 3 Changing Not Just Analyzing – Control Theory And Reinforcement Learning
  • 4 Recommendations As A Game – Reinforcement Learning For Recommendation Engines
  • 5 How Engines Learn To Generate Recommendations – Adaptive Learning Algorithms
  • 6 Up The Down Staircase – Hierarchical Reinforcement Learning
  • 7 Breaking Dimensions – Adaptive Scoring With Sparse Grids
  • 8 Decomposition In Transition - Adaptive Matrix Factorization
  • 9 Decomposition In Transition Ii - Adaptive Tensor Factorization
  • 10 The Big Picture – Towards A Synthesis Of Rl And Adaptive Tensor Factorization
  • 11 What Cannot Be Measured Cannot Be Controlled - Gauging Success With A/B Tests
  • 12 Building A Recommendation Engine – The Xelopes Library
  • 13 Last Words – Conclusion
  • References
  • Summary Of Notation.