Multi-Band Effective Mass Approximations Advanced Mathematical Models and Numerical Techniques /

This book addresses several mathematical models from the most relevant class of kp-Schrödinger systems. Both mathematical models and state-of-the-art numerical methods for adequately solving the arising systems of differential equations are presented. The operational principle of modern semiconducto...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Ehrhardt, Matthias (Επιμελητής έκδοσης), Koprucki, Thomas (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Lecture Notes in Computational Science and Engineering, 94
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04109nam a22005415i 4500
001 978-3-319-01427-2
003 DE-He213
005 20151103121212.0
007 cr nn 008mamaa
008 140717s2014 gw | s |||| 0|eng d
020 |a 9783319014272  |9 978-3-319-01427-2 
024 7 |a 10.1007/978-3-319-01427-2  |2 doi 
040 |d GrThAP 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
245 1 0 |a Multi-Band Effective Mass Approximations  |h [electronic resource] :  |b Advanced Mathematical Models and Numerical Techniques /  |c edited by Matthias Ehrhardt, Thomas Koprucki. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XVI, 318 p. 83 illus., 62 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computational Science and Engineering,  |x 1439-7358 ;  |v 94 
505 0 |a Introduction -- Part I: Physical Models -- Part II: Numerical Methods -- Part III: Applications -- Part IV: Advanced Mathematical Topics. 
520 |a This book addresses several mathematical models from the most relevant class of kp-Schrödinger systems. Both mathematical models and state-of-the-art numerical methods for adequately solving the arising systems of differential equations are presented. The operational principle of modern semiconductor nano structures, such as quantum wells, quantum wires or quantum dots, relies on quantum mechanical effects. The goal of numerical simulations using quantum mechanical models in the development of semiconductor nano structures is threefold: First they are needed for a deeper understanding of experimental data and of the operational principle. Secondly, they allow us to predict and optimize in advance the qualitative and quantitative properties of new devices in order to minimize the number of prototypes needed. Semiconductor nano structures are embedded as an active region in semiconductor devices. Thirdly and finally, the results of quantum mechanical simulations of semiconductor nano structures can be used with upscaling methods to deliver parameters needed in semi-classical models for semiconductor devices, such as quantum well lasers. This book covers in detail all these three aspects using a variety of illustrative examples. Readers will gain detailed insights into the status of the multiband effective mass method for semiconductor nano structures. Both users of the kp method as well as advanced researchers who want to advance the kp method further will find helpful information on how to best work with this method and use it as a tool for characterizing the physical properties of semiconductor nano structures. The book is primarily intended for graduate and Ph.D. students in applied mathematics, mathematical physics and theoretical physics, as well as all those working in quantum mechanical research or the semiconductor / opto-electronic industry who are interested in new mathematical aspects. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Computer mathematics. 
650 0 |a Physics. 
650 0 |a Quantum physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Numerical and Computational Physics. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Partial Differential Equations. 
700 1 |a Ehrhardt, Matthias.  |e editor. 
700 1 |a Koprucki, Thomas.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319014265 
830 0 |a Lecture Notes in Computational Science and Engineering,  |x 1439-7358 ;  |v 94 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-01427-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)