Data Analysis, Machine Learning and Knowledge Discovery

Data analysis, machine learning and knowledge discovery are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Spiliopoulou, Myra (Επιμελητής έκδοσης), Schmidt-Thieme, Lars (Επιμελητής έκδοσης), Janning, Ruth (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Studies in Classification, Data Analysis, and Knowledge Organization,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • AREA Statistics and Data Analysis: Classifcation, Cluster Analysis, Factor Analysis and Model Selection
  • AREA Machine Learning and Knowledge Discovery: Clustering, Classifiers, Streams and Social Networks
  • AREA Data Analysis and Classification in Marketing
  • AREA Data Analysis in Finance
  • AREA Data Analysis in Biostatistics and Bioinformatics
  • AREA Interdisciplinary Domains: Data Analysis in Music, Education and Psychology.- LIS Workshop: Workshop on Classification and Subject Indexing in Library and Information Science.