Algorithms for Sparsity-Constrained Optimization

This thesis demonstrates techniques that provide faster and more accurate solutions to a variety of problems in machine learning and signal processing. The author proposes a"greedy" algorithm, deriving sparse solutions with guarantees of optimality. The use of this algorithm removes many o...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bahmani, Sohail (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research, 261
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02459nam a22005295i 4500
001 978-3-319-01881-2
003 DE-He213
005 20151028111648.0
007 cr nn 008mamaa
008 131007s2014 gw | s |||| 0|eng d
020 |a 9783319018812  |9 978-3-319-01881-2 
024 7 |a 10.1007/978-3-319-01881-2  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
050 4 |a TK7882.S65 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 |a Bahmani, Sohail.  |e author. 
245 1 0 |a Algorithms for Sparsity-Constrained Optimization  |h [electronic resource] /  |c by Sohail Bahmani. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XXI, 107 p. 13 illus., 12 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 ;  |v 261 
505 0 |a Introduction -- Preliminaries -- Sparsity-Constrained Optimization -- Background -- 1-bit Compressed Sensing -- Estimation Under Model-Based Sparsity -- Projected Gradient Descent for `p-constrained Least Squares -- Conclusion and Future Work. 
520 |a This thesis demonstrates techniques that provide faster and more accurate solutions to a variety of problems in machine learning and signal processing. The author proposes a"greedy" algorithm, deriving sparse solutions with guarantees of optimality. The use of this algorithm removes many of the inaccuracies that occurred with the use of previous models. 
650 0 |a Engineering. 
650 0 |a Image processing. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Computer mathematics. 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Mathematical Applications in Computer Science. 
650 2 4 |a Image Processing and Computer Vision. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319018805 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 ;  |v 261 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-01881-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)