Algorithms for Sparsity-Constrained Optimization
This thesis demonstrates techniques that provide faster and more accurate solutions to a variety of problems in machine learning and signal processing. The author proposes a"greedy" algorithm, deriving sparse solutions with guarantees of optimality. The use of this algorithm removes many o...
Κύριος συγγραφέας: | Bahmani, Sohail (Συγγραφέας) |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2014.
|
Σειρά: | Springer Theses, Recognizing Outstanding Ph.D. Research,
261 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
Riemannian Computing in Computer Vision
Έκδοση: (2016) -
Perceptual Image Coding with Discrete Cosine Transform
ανά: Tan, Ee-Leng, κ.ά.
Έκδοση: (2015) -
Multiresolution Approach to Processing Images for Different Applications Interaction of Lower Processing with Higher Vision /
ανά: Vujović, Igor
Έκδοση: (2015) -
Big Visual Data Analysis Scene Classification and Geometric Labeling /
ανά: Chen, Chen, κ.ά.
Έκδοση: (2016) -
Writing Virtual Environments for Software Visualization
ανά: Jeffery, Clinton, κ.ά.
Έκδοση: (2015)