Local Minimization, Variational Evolution and Γ-Convergence

This book addresses new questions related to the asymptotic description of converging energies from the standpoint of local minimization and variational evolution. It explores the links between Gamma-limits, quasistatic evolution, gradient flows and stable points, raising new questions and proposing...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Braides, Andrea (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Lecture Notes in Mathematics, 2094
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03307nam a22005895i 4500
001 978-3-319-01982-6
003 DE-He213
005 20151105151021.0
007 cr nn 008mamaa
008 131025s2014 gw | s |||| 0|eng d
020 |a 9783319019826  |9 978-3-319-01982-6 
024 7 |a 10.1007/978-3-319-01982-6  |2 doi 
040 |d GrThAP 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Braides, Andrea.  |e author. 
245 1 0 |a Local Minimization, Variational Evolution and Γ-Convergence  |h [electronic resource] /  |c by Andrea Braides. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XI, 174 p. 42 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2094 
505 0 |a Introduction -- Global minimization -- Parameterized motion driven by global minimization -- Local minimization as a selection criterion -- Convergence of local minimizers -- Small-scale stability -- Minimizing movements -- Minimizing movements along a sequence of functionals -- Geometric minimizing movements -- Different time scales -- Stability theorems -- Index. 
520 |a This book addresses new questions related to the asymptotic description of converging energies from the standpoint of local minimization and variational evolution. It explores the links between Gamma-limits, quasistatic evolution, gradient flows and stable points, raising new questions and proposing new techniques. These include the definition of effective energies that maintain the pattern of local minima, the introduction of notions of convergence of energies compatible with stable points, the computation of homogenized motions at critical time-scales through the definition of minimizing movement along a sequence of energies, the use of scaled energies to study long-term behavior or backward motion for variational evolutions. The notions explored in the book are linked to existing findings for gradient flows, energetic solutions and local minimizers, for which some generalizations are also proposed. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Approximation theory. 
650 0 |a Functional analysis. 
650 0 |a Partial differential equations. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Calculus of variations. 
650 1 4 |a Mathematics. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Analysis. 
650 2 4 |a Functional Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319019819 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2094 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-01982-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)