Contact and Symplectic Topology

Symplectic and contact geometry naturally emerged from the mathematical description of classical physics. The discovery of new rigidity phenomena and properties satisfied by these geometric structures launched a new research field worldwide. The intense activity of many European research groups in t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Bourgeois, Frédéric (Επιμελητής έκδοσης), Colin, Vincent (Επιμελητής έκδοσης), Stipsicz, András (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Bolyai Society Mathematical Studies, 26
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03218nam a22005055i 4500
001 978-3-319-02036-5
003 DE-He213
005 20151204154857.0
007 cr nn 008mamaa
008 140310s2014 gw | s |||| 0|eng d
020 |a 9783319020365  |9 978-3-319-02036-5 
024 7 |a 10.1007/978-3-319-02036-5  |2 doi 
040 |d GrThAP 
050 4 |a QC5.53 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
245 1 0 |a Contact and Symplectic Topology  |h [electronic resource] /  |c edited by Frédéric Bourgeois, Vincent Colin, András Stipsicz. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XIII, 530 p. 164 illus., 82 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Bolyai Society Mathematical Studies,  |x 1217-4696 ;  |v 26 
505 0 |a Mathematical contributions from V.I. Arnold -- Topological methods in 3-dimensional contact geometry -- A short introduction to Fukaya categories -- Open books and Lefschetz pencils in contact geometry -- Introduction to contact topology in higher dimensions -- Bordered Heegaard Floer homology -- Stein structures: existence and flexibility -- Embedded contact homology, cobordism maps, and applications -- Knot contact homology and applications. 
520 |a Symplectic and contact geometry naturally emerged from the mathematical description of classical physics. The discovery of new rigidity phenomena and properties satisfied by these geometric structures launched a new research field worldwide. The intense activity of many European research groups in this field is reflected by the ESF Research Networking Programme "Contact And Symplectic Topology" (CAST). The lectures of the Summer School in Nantes (June 2011) and of the CAST Summer School in Budapest (July 2012) provide a nice panorama of many aspects of the present status of contact and symplectic topology. The notes of the minicourses offer a gentle introduction to topics which have developed in an amazing speed in the recent past. These topics include 3-dimensional and higher dimensional contact topology, Fukaya categories, asymptotically holomorphic methods in contact topology, bordered Floer homology, embedded contact homology, and flexibility results for Stein manifolds. 
650 0 |a Physics. 
650 0 |a Mathematical physics. 
650 0 |a Geometry. 
650 1 4 |a Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Geometry. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
650 2 4 |a Mathematical Physics. 
700 1 |a Bourgeois, Frédéric.  |e editor. 
700 1 |a Colin, Vincent.  |e editor. 
700 1 |a Stipsicz, András.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319020358 
830 0 |a Bolyai Society Mathematical Studies,  |x 1217-4696 ;  |v 26 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-02036-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)