Locally Convex Spaces

For most practicing analysts who use functional analysis, the restriction to Banach spaces seen in most real analysis graduate texts is not enough for their research. This graduate text, while focusing on locally convex topological vector spaces, is intended to cover most of the general theory neede...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Osborne, M. Scott (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Graduate Texts in Mathematics, 269
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02862nam a22004695i 4500
001 978-3-319-02045-7
003 DE-He213
005 20151103122709.0
007 cr nn 008mamaa
008 131106s2014 gw | s |||| 0|eng d
020 |a 9783319020457  |9 978-3-319-02045-7 
024 7 |a 10.1007/978-3-319-02045-7  |2 doi 
040 |d GrThAP 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.7  |2 23 
100 1 |a Osborne, M. Scott.  |e author. 
245 1 0 |a Locally Convex Spaces  |h [electronic resource] /  |c by M. Scott Osborne. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a VIII, 213 p. 5 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 269 
505 0 |a 1 Topological Groups -- 2 Topological Vector Spaces -- 3 Locally Convex Spaces -- 4 The Classics -- 5 Dual Spaces -- 6 Duals of Fré chet Spaces -- A Topological Oddities -- B Closed Graphs in Topological Groups -- C The Other Krein–Smulian Theorem -- D Further Hints for Selected Exercises -- Bibliography -- Index. 
520 |a For most practicing analysts who use functional analysis, the restriction to Banach spaces seen in most real analysis graduate texts is not enough for their research. This graduate text, while focusing on locally convex topological vector spaces, is intended to cover most of the general theory needed for application to other areas of analysis.  Normed vector spaces, Banach spaces, and Hilbert spaces are all examples of classes of locally convex spaces, which is why this is an important topic in functional analysis. While this graduate text focuses on what is needed for applications, it also shows the beauty of the subject and motivates the reader with exercises of varying difficulty. Key topics covered include point set topology, topological vector spaces, the Hahn–Banach theorem, seminorms and Fréchet spaces, uniform boundedness, and dual spaces. The prerequisite for this text is the Banach space theory typically taught in a beginning graduate real analysis course. 
650 0 |a Mathematics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Functional analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Topological Groups, Lie Groups. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319020440 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 269 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-02045-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)