Where is the Gödel-point hiding: Gentzen’s Consistency Proof of 1936 and His Representation of Constructive Ordinals

This book explains the first published consistency proof of PA. It contains the original Gentzen's proof, but it uses modern terminology and examples to illustrate the essential notions. The author comments on Gentzen's steps which are supplemented with exact calculations and parts of form...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Horská, Anna (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:SpringerBriefs in Philosophy,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02439nam a22004575i 4500
001 978-3-319-02171-3
003 DE-He213
005 20151120180548.0
007 cr nn 008mamaa
008 131022s2014 gw | s |||| 0|eng d
020 |a 9783319021713  |9 978-3-319-02171-3 
024 7 |a 10.1007/978-3-319-02171-3  |2 doi 
040 |d GrThAP 
050 4 |a BC1-199 
072 7 |a HPL  |2 bicssc 
072 7 |a PHI011000  |2 bisacsh 
082 0 4 |a 160  |2 23 
100 1 |a Horská, Anna.  |e author. 
245 1 0 |a Where is the Gödel-point hiding: Gentzen’s Consistency Proof of 1936 and His Representation of Constructive Ordinals  |h [electronic resource] /  |c by Anna Horská. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a IX, 77 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Philosophy,  |x 2211-4548 
505 0 |a Acknowledgements -- 1 Introduction -- 2 Preliminaries -- 3 Ordinal numbers -- 4 Consistency proof -- Index -- References. 
520 |a This book explains the first published consistency proof of PA. It contains the original Gentzen's proof, but it uses modern terminology and examples to illustrate the essential notions. The author comments on Gentzen's steps which are supplemented with exact calculations and parts of formal derivations. A notable aspect of the proof is the representation of ordinal numbers that was developed by Gentzen. This representation is analysed and connection to set-theoretical representation is found, namely an algorithm for translating Gentzen's notation into Cantor normal form. The topic should interest researchers and students who work on proof theory, history of proof theory or Hilbert's program and who do not mind reading mathematical texts. 
650 0 |a Philosophy. 
650 0 |a Logic. 
650 0 |a Mathematical logic. 
650 1 4 |a Philosophy. 
650 2 4 |a Logic. 
650 2 4 |a Mathematical Logic and Foundations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319021706 
830 0 |a SpringerBriefs in Philosophy,  |x 2211-4548 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-02171-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SHU 
950 |a Humanities, Social Sciences and Law (Springer-11648)