Strong and Weak Approximation of Semilinear Stochastic Evolution Equations
In this book we analyze the error caused by numerical schemes for the approximation of semilinear stochastic evolution equations (SEEq) in a Hilbert space-valued setting. The numerical schemes considered combine Galerkin finite element methods with Euler-type temporal approximations. Starting from a...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2014.
|
Σειρά: | Lecture Notes in Mathematics,
2093 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction
- Stochastic Evolution Equations in Hilbert Spaces
- Optimal Strong Error Estimates for Galerkin Finite Element Methods
- A Short Review of the Malliavin Calculus in Hilbert Spaces
- A Malliavin Calculus Approach to Weak Convergence
- Numerical Experiments
- Some Useful Variations of Gronwall’s Lemma
- Results on Semigroups and their Infinitesimal Generators
- A Generalized Version of Lebesgue’s Theorem
- References
- Index.