Hyperbolic Systems with Analytic Coefficients Well-posedness of the Cauchy Problem /

This monograph focuses on the well-posedness of the Cauchy problem for linear hyperbolic systems with matrix coefficients. Mainly two questions are discussed: (A) Under which conditions on lower order terms is the Cauchy problem well posed? (B) When is the Cauchy problem well posed for any lower ord...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Nishitani, Tatsuo (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Lecture Notes in Mathematics, 2097
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02896nam a22004695i 4500
001 978-3-319-02273-4
003 DE-He213
005 20151031001118.0
007 cr nn 008mamaa
008 131118s2014 gw | s |||| 0|eng d
020 |a 9783319022734  |9 978-3-319-02273-4 
024 7 |a 10.1007/978-3-319-02273-4  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Nishitani, Tatsuo.  |e author. 
245 1 0 |a Hyperbolic Systems with Analytic Coefficients  |h [electronic resource] :  |b Well-posedness of the Cauchy Problem /  |c by Tatsuo Nishitani. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a VIII, 237 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2097 
505 0 |a Introduction -- Necessary conditions for strong hyperbolicity -- Two by two systems with two independent variables -- Systems with nondegenerate characteristics -- Index. 
520 |a This monograph focuses on the well-posedness of the Cauchy problem for linear hyperbolic systems with matrix coefficients. Mainly two questions are discussed: (A) Under which conditions on lower order terms is the Cauchy problem well posed? (B) When is the Cauchy problem well posed for any lower order term? For first order two by two systems with two independent variables with real analytic coefficients, we present complete answers for both (A) and (B). For first order systems with real analytic coefficients we prove general necessary conditions for question (B) in terms of minors of the principal symbols. With regard to sufficient conditions for (B), we introduce hyperbolic systems with nondegenerate characteristics, which contains strictly hyperbolic systems, and prove that the Cauchy problem for hyperbolic systems with nondegenerate characteristics is well posed for any lower order term. We also prove that any hyperbolic system which is close to a hyperbolic system with a nondegenerate characteristic of multiple order has a nondegenerate characteristic of the same order nearby.  . 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319022727 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2097 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-02273-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)