Basic Concepts in Computational Physics

With the development of ever more powerful computers a new branch of physics and engineering evolved over the last few decades: Computer Simulation or Computational Physics. It serves two main purposes: - Solution of complex mathematical problems such as, differential equations, minimization/optimiz...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: A. Stickler, Benjamin (Συγγραφέας), Schachinger, Ewald (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04224nam a22005295i 4500
001 978-3-319-02435-6
003 DE-He213
005 20151103132402.0
007 cr nn 008mamaa
008 131210s2014 gw | s |||| 0|eng d
020 |a 9783319024356  |9 978-3-319-02435-6 
024 7 |a 10.1007/978-3-319-02435-6  |2 doi 
040 |d GrThAP 
050 4 |a QC1-999 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.1  |2 23 
100 1 |a A. Stickler, Benjamin.  |e author. 
245 1 0 |a Basic Concepts in Computational Physics  |h [electronic resource] /  |c by Benjamin A. Stickler, Ewald Schachinger. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XVII, 377 p. 95 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Some Basic Remarks -- Part I Deterministic Methods: Numerical Differentiation -- Numerical Integration -- The KEPLER Problem -- Ordinary Differential Equations – Initial Value Problems -- The Double Pendulum -- Molecular Dynamics -- Numerics of Ordinary Differential Equations - Boundary Value Problems -- The One-Dimensional Stationary Heat Equation -- The One-Dimensional Stationary SCHRÖDINGER Equation -- Numerics of Partial Differential Equations -- Part II Stochastic Methods -- Pseudo Random Number Generators -- Random Sampling Methods -- A Brief Introduction to Monte-Carlo Methods -- The ISING Model -- Some Basics of Stochastic Processes -- The Random Walk and Diffusion Theory -- MARKOV-Chain Monte Carlo and the POTTS Model -- Data Analysis -- Stochastic Optimization. 
520 |a With the development of ever more powerful computers a new branch of physics and engineering evolved over the last few decades: Computer Simulation or Computational Physics. It serves two main purposes: - Solution of complex mathematical problems such as, differential equations, minimization/optimization, or high-dimensional sums/integrals. - Direct simulation of physical processes, as for instance, molecular dynamics or Monte-Carlo simulation of physical/chemical/technical processes. Consequently, the book is divided into two main parts: Deterministic methods and stochastic methods. Based on concrete problems, the first part discusses numerical differentiation and integration, and the treatment of ordinary differential equations. This is augmented by notes on the numerics of partial differential equations. The second part discusses the generation of random numbers, summarizes the basics of stochastics which is then followed by the introduction of various Monte-Carlo (MC) methods. Specific emphasis is on MARKOV chain MC algorithms. All this is again augmented by numerous applications from physics. The final two chapters on Data Analysis and Stochastic Optimization share the two main topics as a common denominator. The book offers a number of appendices to provide the reader with more detailed information on various topics discussed in the main part. Nevertheless, the reader should be familiar with the most important concepts of statistics and probability theory albeit two appendices have been dedicated to provide a rudimentary discussion. 
650 0 |a Physics. 
650 0 |a Chemistry, Physical and theoretical. 
650 0 |a Computer mathematics. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Physics. 
650 2 4 |a Numerical and Computational Physics. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Theoretical and Computational Chemistry. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
700 1 |a Schachinger, Ewald.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319024349 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-02435-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)