Coarse Geometry and Randomness École d’Été de Probabilités de Saint-Flour XLI – 2011 /

These lecture notes study the interplay between randomness and geometry of graphs. The first part of the notes reviews several basic geometric concepts, before moving on to examine the manifestation of the underlying geometry in the behavior of random processes, mostly percolation and random walk. T...

Full description

Bibliographic Details
Main Author: Benjamini, Itai (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2013.
Series:Lecture Notes in Mathematics, 2100
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03504nam a22005655i 4500
001 978-3-319-02576-6
003 DE-He213
005 20151204174219.0
007 cr nn 008mamaa
008 131202s2013 gw | s |||| 0|eng d
020 |a 9783319025766  |9 978-3-319-02576-6 
024 7 |a 10.1007/978-3-319-02576-6  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
100 1 |a Benjamini, Itai.  |e author. 
245 1 0 |a Coarse Geometry and Randomness  |h [electronic resource] :  |b École d’Été de Probabilités de Saint-Flour XLI – 2011 /  |c by Itai Benjamini. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 |a VII, 129 p. 6 illus., 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2100 
505 0 |a Isoperimetry and expansions in graphs -- Several metric notions -- The hyperbolic plane and hyperbolic graphs -- More on the structure of vertex transitive graphs -- Percolation on graphs -- Local limits of graphs -- Random planar geometry -- Growth and isoperimetric profile of planar graphs -- Critical percolation on non-amenable groups -- Uniqueness of the infinite percolation cluster -- Percolation perturbations -- Percolation on expanders -- Harmonic functions on graphs -- Nonamenable Liouville graphs. 
520 |a These lecture notes study the interplay between randomness and geometry of graphs. The first part of the notes reviews several basic geometric concepts, before moving on to examine the manifestation of the underlying geometry in the behavior of random processes, mostly percolation and random walk. The study of the geometry of infinite vertex transitive graphs, and of Cayley graphs in particular, is fairly well developed. One goal of these notes is to point to some random metric spaces modeled by graphs that turn out to be somewhat exotic, that is, they admit a combination of properties not encountered in the vertex transitive world. These include percolation clusters on vertex transitive graphs, critical clusters, local and scaling limits of graphs, long range percolation, CCCP graphs obtained by contracting percolation clusters on graphs, and stationary random graphs, including the uniform infinite planar triangulation (UIPT) and the stochastic hyperbolic planar quadrangulation (SHIQ). 
650 0 |a Mathematics. 
650 0 |a Geometry. 
650 0 |a Probabilities. 
650 0 |a Graph theory. 
650 0 |a Physics. 
650 0 |a Statistics. 
650 0 |a Continuum mechanics. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Continuum Mechanics and Mechanics of Materials. 
650 2 4 |a Graph Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319025759 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2100 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-02576-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)