Learning Motor Skills From Algorithms to Robot Experiments /

This book presents the state of the art in reinforcement learning applied to robotics both in terms of novel algorithms and applications. It discusses recent approaches that allow robots to learn motor skills and presents tasks that need to take into account the dynamic behavior of the robot and its...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kober, Jens (Συγγραφέας), Peters, Jan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Springer Tracts in Advanced Robotics, 97
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03084nam a22005055i 4500
001 978-3-319-03194-1
003 DE-He213
005 20151103123539.0
007 cr nn 008mamaa
008 131123s2014 gw | s |||| 0|eng d
020 |a 9783319031941  |9 978-3-319-03194-1 
024 7 |a 10.1007/978-3-319-03194-1  |2 doi 
040 |d GrThAP 
050 4 |a TJ210.2-211.495 
050 4 |a T59.5 
072 7 |a TJFM1  |2 bicssc 
072 7 |a TEC037000  |2 bisacsh 
072 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 629.892  |2 23 
100 1 |a Kober, Jens.  |e author. 
245 1 0 |a Learning Motor Skills  |h [electronic resource] :  |b From Algorithms to Robot Experiments /  |c by Jens Kober, Jan Peters. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XVI, 191 p. 56 illus., 54 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Tracts in Advanced Robotics,  |x 1610-7438 ;  |v 97 
505 0 |a Reinforcement Learning in Robotics: A Survey -- Movement Templates for Learning of Hitting and Batting -- Policy Search for Motor Primitives in Robotics -- Reinforcement Learning to Adjust Parameterized Motor Primitives to New Situations -- Learning Prioritized Control of Motor Primitives. 
520 |a This book presents the state of the art in reinforcement learning applied to robotics both in terms of novel algorithms and applications. It discusses recent approaches that allow robots to learn motor skills and presents tasks that need to take into account the dynamic behavior of the robot and its environment, where a kinematic movement plan is not sufficient. The book illustrates a method that learns to generalize parameterized motor plans which is obtained by imitation or reinforcement learning, by adapting a small set of global parameters, and appropriate kernel-based reinforcement learning algorithms. The presented applications explore highly dynamic tasks and exhibit a very efficient learning process. All proposed approaches have been extensively validated with benchmarks tasks, in simulation, and on real robots. These tasks correspond to sports and games but the presented techniques are also applicable to more mundane household tasks. The book is based on the first author’s doctoral thesis, which won the 2013 EURON Georges Giralt PhD Award. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 1 4 |a Engineering. 
650 2 4 |a Robotics and Automation. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Peters, Jan.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319031934 
830 0 |a Springer Tracts in Advanced Robotics,  |x 1610-7438 ;  |v 97 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-03194-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)