Mathematical and Numerical Methods for Partial Differential Equations Applications for Engineering Sciences /

This self-tutorial offers a concise yet thorough introduction into the mathematical analysis of approximation methods for partial differential equation. A particular emphasis is put on finite element methods. The unique approach first summarizes and outlines the finite-element mathematics in general...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Chaskalovic, Joël (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Mathematical Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03120nam a22005295i 4500
001 978-3-319-03563-5
003 DE-He213
005 20151030021438.0
007 cr nn 008mamaa
008 140516s2014 gw | s |||| 0|eng d
020 |a 9783319035635  |9 978-3-319-03563-5 
024 7 |a 10.1007/978-3-319-03563-5  |2 doi 
040 |d GrThAP 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
100 1 |a Chaskalovic, Joël.  |e author. 
245 1 0 |a Mathematical and Numerical Methods for Partial Differential Equations  |h [electronic resource] :  |b Applications for Engineering Sciences /  |c by Joël Chaskalovic. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XIV, 358 p. 38 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematical Engineering,  |x 2192-4732 
505 0 |a From the Contents: Introduction to functional analytical methods of partial differential equations -- The finite element method -- Variational Formulations of elliptic boundary problems -- Finite Elements and differential Introduction to functional analytical methods of partial differential equations -- The finite element method -- Variational Formulations of elliptic boundary problems. 
520 |a This self-tutorial offers a concise yet thorough introduction into the mathematical analysis of approximation methods for partial differential equation. A particular emphasis is put on finite element methods. The unique approach first summarizes and outlines the finite-element mathematics in general and then, in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material, as in most standard textbooks. This English edition is based on the Finite Element Methods for Engineering Sciences by Joel Chaskalovic. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Numerical analysis. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Continuum mechanics. 
650 1 4 |a Mathematics. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Continuum Mechanics and Mechanics of Materials. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319035628 
830 0 |a Mathematical Engineering,  |x 2192-4732 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-03563-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)