A Primer on Hilbert Space Theory Linear Spaces, Topological Spaces, Metric Spaces, Normed Spaces, and Topological Groups /

This book is an introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for an introduction to the theory of Hilbert sp...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Alabiso, Carlo (Συγγραφέας), Weiss, Ittay (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:UNITEXT for Physics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03139nam a22004815i 4500
001 978-3-319-03713-4
003 DE-He213
005 20151030101951.0
007 cr nn 008mamaa
008 141008s2015 gw | s |||| 0|eng d
020 |a 9783319037134  |9 978-3-319-03713-4 
024 7 |a 10.1007/978-3-319-03713-4  |2 doi 
040 |d GrThAP 
050 4 |a QC5.53 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Alabiso, Carlo.  |e author. 
245 1 2 |a A Primer on Hilbert Space Theory  |h [electronic resource] :  |b Linear Spaces, Topological Spaces, Metric Spaces, Normed Spaces, and Topological Groups /  |c by Carlo Alabiso, Ittay Weiss. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XVII, 255 p. 5 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a UNITEXT for Physics,  |x 2198-7882 
505 0 |a 1 Introduction and Preliminaries -- 2 Linear Spaces -- 3 Topological Spaces -- 4 Metric Spaces -- 5 Normed Spaces -- 6 Topological Groups -- 7 Solved Problems. 
520 |a This book is an introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, resides in the very high mathematical difficulty of even the simplest physical case. Within an ordinary graduate course in physics there is insufficient time to cover the theory of Hilbert spaces and operators, as well as distribution theory, with sufficient mathematical rigor. Compromises must be found between full rigor and practical use of the instruments. The book is based on the author's lessons on functional analysis for graduate students in physics. It will equip the reader to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. With respect to the original lectures, the mathematical flavor in all subjects has been enriched. Moreover, a brief introduction to topological groups has been added in addition to exercises and solved problems throughout the text. With these improvements, the book can be used in upper undergraduate and lower graduate courses, both in Physics and in Mathematics. 
650 0 |a Physics. 
650 0 |a Functional analysis. 
650 0 |a Algebraic topology. 
650 1 4 |a Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Algebraic Topology. 
700 1 |a Weiss, Ittay.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319037127 
830 0 |a UNITEXT for Physics,  |x 2198-7882 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-03713-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)