Open Problems in Spectral Dimensionality Reduction

The last few years have seen a great increase in the amount of data available to scientists. Datasets with millions of objects and hundreds, if not thousands of measurements are now commonplace in many disciplines. However, many of the computational techniques used to analyse this data cannot cope w...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Strange, Harry (Συγγραφέας), Zwiggelaar, Reyer (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04040nam a22005415i 4500
001 978-3-319-03943-5
003 DE-He213
005 20151103123517.0
007 cr nn 008mamaa
008 140107s2014 gw | s |||| 0|eng d
020 |a 9783319039435  |9 978-3-319-03943-5 
024 7 |a 10.1007/978-3-319-03943-5  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Strange, Harry.  |e author. 
245 1 0 |a Open Problems in Spectral Dimensionality Reduction  |h [electronic resource] /  |c by Harry Strange, Reyer Zwiggelaar. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a IX, 92 p. 20 illus., 15 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 |a Introduction -- Spectral Dimensionality Reduction -- Modelling the Manifold -- Intrinsic Dimensionality -- Incorporating New Points -- Large Scale Data -- Postcript. 
520 |a The last few years have seen a great increase in the amount of data available to scientists. Datasets with millions of objects and hundreds, if not thousands of measurements are now commonplace in many disciplines. However, many of the computational techniques used to analyse this data cannot cope with such large datasets. Therefore, strategies need to be employed as a pre-processing step to reduce the number of objects, or measurements, whilst retaining important information inherent to the data. Spectral dimensionality reduction is one such family of methods that has proven to be an indispensable tool in the data processing pipeline. In recent years the area has gained much attention thanks to the development of nonlinear spectral dimensionality reduction methods, often referred to as manifold learning algorithms. Numerous algorithms and improvements have been proposed for the purpose of performing spectral dimensionality reduction, yet there is still no gold standard technique. Those wishing to use spectral dimensionality reduction without prior knowledge of the field will immediately be confronted with questions that need answering: What parameter values to use? How many dimensions should the data be embedded into? How are new data points incorporated? What about large-scale data? For many, a search of the literature to find answers to these questions is impractical, as such, there is a need for a concise discussion into the problems themselves, how they affect spectral dimensionality reduction, and how these problems can be overcome. This book provides a survey and reference aimed at advanced undergraduate and postgraduate students as well as researchers, scientists, and engineers in a wide range of disciplines. Dimensionality reduction has proven useful in a wide range of problem domains and so this book will be applicable to anyone with a solid grounding in statistics and computer science seeking to apply spectral dimensionality to their work. 
650 0 |a Computer science. 
650 0 |a Data structures (Computer science). 
650 0 |a Algorithms. 
650 0 |a Artificial intelligence. 
650 0 |a Image processing. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Data Structures. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Image Processing and Computer Vision. 
700 1 |a Zwiggelaar, Reyer.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319039428 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-03943-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)