Dynamic Fracture of Piezoelectric Materials Solution of Time-Harmonic Problems via BIEM /
Dynamic Fracture of Piezoelectric Materials focuses on the Boundary Integral Equation Method as an efficient computational tool. The presentation of the theoretical basis of piezoelectricity is followed by sections on fundamental solutions and the numerical realization of the boundary value problems...
Κύριοι συγγραφείς: | , , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2014.
|
Σειρά: | Solid Mechanics and Its Applications,
212 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1 Introduction
- Part I Theoretical basics
- 2 Piezoelectric materials
- 3 Fundamental solutions.- 4 Numerical realization by BIEM
- Part II Homogeneous PEM
- 5 Steady-state problems in a cracked anisotropic domain
- 6 2D wave scattering by cracks in a piezoelectric plane
- 7 Piezoelectric cracked finite solids under time-harmonic loading
- 8 Dynamic crack interaction in piezoelectric and anisotropic solids
- 9 Different electric boundary conditions
- Part III Functionally graded PEM
- 10 In-plane crack problems in functionally graded piezoelectric solids
- 11 Functionally graded piezoelectric media with a single anti-plane crack
- 12 Multiple anti-plane cracks in quadratically inhomogeneous piezoelectric finite solids
- 13 Anti-plane cracks in exponentially inhomogeneous finite piezoelectric solid
- 14 Exponentially inhomogeneous piezoelectric solid with a circular anti-plane hole
- 15 Anti-plane dynamic crack–hole interaction in a functionally graded piezoelectric medium
- Index.