Optimizing Hospital-wide Patient Scheduling Early Classification of Diagnosis-related Groups Through Machine Learning /

Diagnosis-related groups (DRGs) are used in hospitals for the reimbursement of inpatient services. The assignment of a patient to a DRG can be distinguished into billing- and operations-driven DRG classification. The topic of this monograph is operations-driven DRG classification, in which DRGs of i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Gartner, Daniel (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Lecture Notes in Economics and Mathematical Systems, 674
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03208nam a22005535i 4500
001 978-3-319-04066-0
003 DE-He213
005 20151204160721.0
007 cr nn 008mamaa
008 150523s2014 gw | s |||| 0|eng d
020 |a 9783319040660  |9 978-3-319-04066-0 
024 7 |a 10.1007/978-3-319-04066-0  |2 doi 
040 |d GrThAP 
050 4 |a HD30.23 
072 7 |a KJT  |2 bicssc 
072 7 |a KJMD  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
082 0 4 |a 658.40301  |2 23 
100 1 |a Gartner, Daniel.  |e author. 
245 1 0 |a Optimizing Hospital-wide Patient Scheduling  |h [electronic resource] :  |b Early Classification of Diagnosis-related Groups Through Machine Learning /  |c by Daniel Gartner. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XIV, 119 p. 22 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Economics and Mathematical Systems,  |x 0075-8442 ;  |v 674 
505 0 |a Introduction -- Machine learning for early DRG classification -- Scheduling the hospital-wide flow of elective patients -- Experimental analyses -- Conclusion. 
520 |a Diagnosis-related groups (DRGs) are used in hospitals for the reimbursement of inpatient services. The assignment of a patient to a DRG can be distinguished into billing- and operations-driven DRG classification. The topic of this monograph is operations-driven DRG classification, in which DRGs of inpatients are employed to improve contribution margin-based patient scheduling decisions. In the first part, attribute selection and classification techniques are evaluated in order to increase early DRG classification accuracy. Employing mathematical programming, the hospital-wide flow of elective patients is modelled taking into account DRGs, clinical pathways and scarce hospital resources. The results of the early DRG classification part reveal that a small set of attributes is sufficient in order to substantially improve DRG classification accuracy as compared to the current approach of many hospitals. Moreover, the results of the patient scheduling part reveal that the contribution margin can be increased as compared to current practice. 
650 0 |a Business. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Health care management. 
650 0 |a Health services administration. 
650 0 |a Health informatics. 
650 0 |a Management science. 
650 1 4 |a Business and Management. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Health Informatics. 
650 2 4 |a Health Informatics. 
650 2 4 |a Operations Research, Management Science. 
650 2 4 |a Health Care Management. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319040653 
830 0 |a Lecture Notes in Economics and Mathematical Systems,  |x 0075-8442 ;  |v 674 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-04066-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBE 
950 |a Business and Economics (Springer-11643)