Information-Theoretic Evaluation for Computational Biomedical Ontologies

The development of effective methods for the prediction of ontological annotations is an important goal in computational biology, yet evaluating their performance is difficult due to problems caused by the structure of biomedical ontologies and incomplete annotations of genes. This work proposes an...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Clark, Wyatt Travis (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02930nam a22005415i 4500
001 978-3-319-04138-4
003 DE-He213
005 20151103130943.0
007 cr nn 008mamaa
008 140109s2014 gw | s |||| 0|eng d
020 |a 9783319041384  |9 978-3-319-04138-4 
024 7 |a 10.1007/978-3-319-04138-4  |2 doi 
040 |d GrThAP 
050 4 |a QH324.2-324.25 
072 7 |a PSA  |2 bicssc 
072 7 |a UB  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
082 0 4 |a 570.285  |2 23 
100 1 |a Clark, Wyatt Travis.  |e author. 
245 1 0 |a Information-Theoretic Evaluation for Computational Biomedical Ontologies  |h [electronic resource] /  |c by Wyatt Travis Clark. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a VII, 46 p. 12 illus., 6 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 |a Introduction -- Methods -- Experiments and Results -- Discussion. 
520 |a The development of effective methods for the prediction of ontological annotations is an important goal in computational biology, yet evaluating their performance is difficult due to problems caused by the structure of biomedical ontologies and incomplete annotations of genes. This work proposes an information-theoretic framework to evaluate the performance of computational protein function prediction. A Bayesian network is used, structured according to the underlying ontology, to model the prior probability of a protein's function. The concepts of misinformation and remaining uncertainty are then defined, that can be seen as analogs of precision and recall. Finally, semantic distance is proposed as a single statistic for ranking classification models. The approach is evaluated by analyzing three protein function predictors of gene ontology terms. The work addresses several weaknesses of current metrics, and provides valuable insights into the performance of protein function prediction tools. 
650 0 |a Computer science. 
650 0 |a Human genetics. 
650 0 |a Health informatics. 
650 0 |a Algorithms. 
650 0 |a Pattern recognition. 
650 0 |a Bioinformatics. 
650 1 4 |a Computer Science. 
650 2 4 |a Computational Biology/Bioinformatics. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Human Genetics. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Health Informatics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319041377 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-04138-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)