Measurement Uncertainties in Science and Technology

This book recasts the classical Gaussian error calculus from scratch, the inducements concerning both random and unknown systematic errors. The idea of this book is to create a formalism being fit to localize the true values of physical quantities considered – true with respect to the set of predefi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Grabe, Michael (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Έκδοση:2nd ed. 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02841nam a22004815i 4500
001 978-3-319-04888-8
003 DE-He213
005 20151103141152.0
007 cr nn 008mamaa
008 140514s2014 gw | s |||| 0|eng d
020 |a 9783319048888  |9 978-3-319-04888-8 
024 7 |a 10.1007/978-3-319-04888-8  |2 doi 
040 |d GrThAP 
050 4 |a T50 
072 7 |a PDDM  |2 bicssc 
072 7 |a SCI068000  |2 bisacsh 
082 0 4 |a 530.8  |2 23 
100 1 |a Grabe, Michael.  |e author. 
245 1 0 |a Measurement Uncertainties in Science and Technology  |h [electronic resource] /  |c by Michael Grabe. 
250 |a 2nd ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XIV, 401 p. 80 illus., 41 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Characterization, Combination of Propagation of Errors -- Least Squares Adjustment -- Linear and Linearized Systems -- Generic Metrological Issues. 
520 |a This book recasts the classical Gaussian error calculus from scratch, the inducements concerning both random and unknown systematic errors. The idea of this book is to create a formalism being fit to localize the true values of physical quantities considered – true with respect to the set of predefined physical units. Remarkably enough, the prevailingly practiced forms of error calculus do not  feature this property which however proves in every respect, to be physically indispensable. The amended formalism, termed Generalized Gaussian Error Calculus by the author, treats unknown systematic errors as biases and brings random errors to bear via enhanced confidence intervals as laid down by students. The significantly extended second edition thoroughly restructures and systematizes the text as a whole and illustrates the formalism by numerous numerical examples. They demonstrate the basic principles of how to understand uncertainties to localize the true values of measured values - a perspective decisive in view of the contested physical explorations. 
650 0 |a Physics. 
650 0 |a Physical measurements. 
650 0 |a Measurement. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Physics. 
650 2 4 |a Measurement Science and Instrumentation. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319048871 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-04888-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)