Frontiers and Challenges in Warm Dense Matter

Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate elect...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Graziani, Frank (Επιμελητής έκδοσης), Desjarlais, Michael P. (Επιμελητής έκδοσης), Redmer, Ronald (Επιμελητής έκδοσης), Trickey, Samuel B. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Lecture Notes in Computational Science and Engineering, 96
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05031nam a22005775i 4500
001 978-3-319-04912-0
003 DE-He213
005 20151125022226.0
007 cr nn 008mamaa
008 140428s2014 gw | s |||| 0|eng d
020 |a 9783319049120  |9 978-3-319-04912-0 
024 7 |a 10.1007/978-3-319-04912-0  |2 doi 
040 |d GrThAP 
050 4 |a QA71-90 
072 7 |a PDE  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 004  |2 23 
245 1 0 |a Frontiers and Challenges in Warm Dense Matter  |h [electronic resource] /  |c edited by Frank Graziani, Michael P. Desjarlais, Ronald Redmer, Samuel B. Trickey. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a X, 282 p. 89 illus., 64 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computational Science and Engineering,  |x 1439-7358 ;  |v 96 
505 0 |a Carsten A. Ullrich, Time-dependent density-functional theory: features and challenges, with a special view on matter under extreme conditions -- Aurora Pribram-Jones, Stefano Pittalis, E.K.U. Gross, and Kieron Burke, Thermal Density Functional Theory in Context -- Valentin V. Karasiev, Travis Sjostrom, Debajit Chakraborty, James W. Dufty, Keith Runge, Frank E. Harris, and S.B. Trickey, Innovations in Finite-Temperature Density Functionals -- Hannes Schulz and Andreas Görling, Toward a comprehensive treatment of temperature in electronic structure calculations: Non-zero-temperature Hartree-Fock and exact-exchange Kohn-Sham methods -- Ethan Brown, Miguel A Morales, Carlo Pierleoni, and David Ceperley, Quantum Monte Carlo techniques and applications for warm dense matter -- D. Saumon, C.E. Starrett, J.A. Anta, W. Daughton and G. Chabrier, The structure of warm dense matter modeled with an average atom model with ion-ion correlations -- Carsten Fortmann, Dynamical structure factor in High Energy Density Plasmas and application to X-Ray Thomson Scattering -- Winfried Lorenzen, Andreas Becker, and Ronald Redmer, Progress in Warm Dense Matter and Planetary Physics -- Tomorr Haxhimali and Robert E. Rudd, Diffusivity of Mixtures in Warm Dense Matter Regime -- Paul E. Grabowski, A Review of Wave Packet Molecular Dynamics. 
520 |a Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent Light Source (LCLS). Warm Dense Matter is also ubiquitous in planetary science and astrophysics, particularly with respect to unresolved questions concerning the structure and age of the gas giants, the nature of exosolar planets, and the cosmochronology of white dwarf stars. In this book we explore established and promising approaches to the modeling of WDM, foundational issues concerning the correct theoretical description of WDM, and the challenging practical issues of numerically modeling strongly coupled systems with many degrees of freedom. 
650 0 |a Mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Quantum physics. 
650 0 |a Superconductivity. 
650 0 |a Superconductors. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 1 4 |a Mathematics. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Strongly Correlated Systems, Superconductivity. 
700 1 |a Graziani, Frank.  |e editor. 
700 1 |a Desjarlais, Michael P.  |e editor. 
700 1 |a Redmer, Ronald.  |e editor. 
700 1 |a Trickey, Samuel B.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319049113 
830 0 |a Lecture Notes in Computational Science and Engineering,  |x 1439-7358 ;  |v 96 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-04912-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)