Geometrical Multiresolution Adaptive Transforms Theory and Applications /

Modern image processing techniques are based on multiresolution geometrical methods of image representation. These methods are efficient in sparse approximation of digital images. There is a wide family of functions called simply ‘X-lets’, and these methods can be divided into two groups: the adapti...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Lisowska, Agnieszka (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Studies in Computational Intelligence, 545
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03382nam a22005295i 4500
001 978-3-319-05011-9
003 DE-He213
005 20151103122510.0
007 cr nn 008mamaa
008 140324s2014 gw | s |||| 0|eng d
020 |a 9783319050119  |9 978-3-319-05011-9 
024 7 |a 10.1007/978-3-319-05011-9  |2 doi 
040 |d GrThAP 
050 4 |a TA1637-1638 
050 4 |a TA1634 
072 7 |a UYT  |2 bicssc 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.6  |2 23 
082 0 4 |a 006.37  |2 23 
100 1 |a Lisowska, Agnieszka.  |e author. 
245 1 0 |a Geometrical Multiresolution Adaptive Transforms  |h [electronic resource] :  |b Theory and Applications /  |c by Agnieszka Lisowska. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XII, 107 p. 65 illus., 21 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 545 
505 0 |a Introduction -- Smoothlets -- Multismoothlets -- Moments-Based Multismoothlet Transform -- Image Compression -- Image Denoising -- Edge Detection -- Summary. 
520 |a Modern image processing techniques are based on multiresolution geometrical methods of image representation. These methods are efficient in sparse approximation of digital images. There is a wide family of functions called simply ‘X-lets’, and these methods can be divided into two groups: the adaptive and the nonadaptive. This book is devoted to the adaptive methods of image approximation, especially to multismoothlets. Besides multismoothlets, several other new ideas are also covered. Current literature considers the black and white images with smooth horizon function as the model for sparse approximation but here, the class of blurred multihorizon is introduced, which is then used in the approximation of images with multiedges. Additionally, the semi-anisotropic model of multiedge representation, the introduction of the shift invariant multismoothlet transform and sliding multismoothlets are also covered. Geometrical Multiresolution Adaptive Transforms should be accessible to both mathematicians and computer scientists. It is suitable as a professional reference for students, researchers and engineers, containing many open problems and will be an excellent starting point for those who are beginning new research in the area or who want to use geometrical multiresolution adaptive methods in image processing, analysis or compression. 
650 0 |a Computer science. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Image processing. 
650 0 |a Computer mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Math Applications in Computer Science. 
650 2 4 |a Mathematical Applications in Computer Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319050102 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 545 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-05011-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)