Basics of Functional Analysis with Bicomplex Scalars, and Bicomplex Schur Analysis

This book provides the foundations for a rigorous theory of functional analysis with bicomplex scalars. It begins with a detailed study of bicomplex and hyperbolic numbers, and then defines the notion of bicomplex modules. After introducing a number of norms and inner products on such modules (some...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Alpay, Daniel (Συγγραφέας), Luna-Elizarrarás, Maria Elena (Συγγραφέας), Shapiro, Michael (Συγγραφέας), Struppa, Daniele C. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02866nam a22005415i 4500
001 978-3-319-05110-9
003 DE-He213
005 20151030111011.0
007 cr nn 008mamaa
008 140319s2014 gw | s |||| 0|eng d
020 |a 9783319051109  |9 978-3-319-05110-9 
024 7 |a 10.1007/978-3-319-05110-9  |2 doi 
040 |d GrThAP 
050 4 |a QA331-355 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.9  |2 23 
100 1 |a Alpay, Daniel.  |e author. 
245 1 0 |a Basics of Functional Analysis with Bicomplex Scalars, and Bicomplex Schur Analysis  |h [electronic resource] /  |c by Daniel Alpay, Maria Elena Luna-Elizarrarás, Michael Shapiro, Daniele C. Struppa. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XV, 95 p. 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a 1. Bicomplex and hyperbolic numbers -- 2. Bicomplex functions and matrices -- 3. BC-modules -- 4. Norms and inner products on BC-modules -- 5. Linear functionals and linear operators on BC-modules -- 6. Schur analysis. 
520 |a This book provides the foundations for a rigorous theory of functional analysis with bicomplex scalars. It begins with a detailed study of bicomplex and hyperbolic numbers, and then defines the notion of bicomplex modules. After introducing a number of norms and inner products on such modules (some of which appear in this volume for the first time), the authors develop the theory of linear functionals and linear operators on bicomplex modules. All of this may serve for many different developments, just like the usual functional analysis with complex scalars, and in this book it serves as the foundational material for the construction and study of a bicomplex version of the well known Schur analysis. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Functions of complex variables. 
650 0 |a Operator theory. 
650 0 |a System theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Operator Theory. 
650 2 4 |a Systems Theory, Control. 
700 1 |a Luna-Elizarrarás, Maria Elena.  |e author. 
700 1 |a Shapiro, Michael.  |e author. 
700 1 |a Struppa, Daniele C.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319051093 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-05110-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)