Methods of Small Parameter in Mathematical Biology

This monograph presents new tools for modeling multiscale biological processes. Natural processes are usually driven by mechanisms widely differing from each other in the time or space scale at which they operate and thus should be described by appropriate multiscale models. However, looking at all...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Banasiak, Jacek (Συγγραφέας), Lachowicz, Mirosław (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2014.
Σειρά:Modeling and Simulation in Science, Engineering and Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04276nam a22004815i 4500
001 978-3-319-05140-6
003 DE-He213
005 20151103130509.0
007 cr nn 008mamaa
008 140419s2014 gw | s |||| 0|eng d
020 |a 9783319051406  |9 978-3-319-05140-6 
024 7 |a 10.1007/978-3-319-05140-6  |2 doi 
040 |d GrThAP 
050 4 |a QA372 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.352  |2 23 
100 1 |a Banasiak, Jacek.  |e author. 
245 1 0 |a Methods of Small Parameter in Mathematical Biology  |h [electronic resource] /  |c by Jacek Banasiak, Mirosław Lachowicz. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a XI, 285 p. 17 illus., 9 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Modeling and Simulation in Science, Engineering and Technology,  |x 2164-3679 
505 0 |a 1 Small parameter methods – basic ideas -- 2 Introduction to the Chapman–Enskog method – linear models with migrations -- 3 Tikhonov–Vasilyeva theory -- 4 The Tikhonov theorem in some models of mathematical biosciences -- 5 Asymptotic expansion method in a singularly perturbed McKendrick problem -- 6 Diffusion limit of the telegraph equation -- 7 Kinetic model of alignment -- 8 From microscopic to macroscopic descriptions. - 9 Conclusion. 
520 |a This monograph presents new tools for modeling multiscale biological processes. Natural processes are usually driven by mechanisms widely differing from each other in the time or space scale at which they operate and thus should be described by appropriate multiscale models. However, looking at all such scales simultaneously is often infeasible, costly, and provides information that is redundant for a particular application. Hence, there has been a growing interest in providing a more focused description of multiscale processes by aggregating variables in a way that is relevant and preserves the salient features of the dynamics. The aim of this book is to present a systematic way of deriving the so-called limit equations for such aggregated variables and ensuring that the coefficients of these equations encapsulate the relevant information from the discarded levels of description. Since any approximation is only valid if an estimate of the incurred error is available, the tools described allow for proving that the solutions to the original multiscale family of equations converge to the solution of the limit equation if the relevant parameter converges to its critical value.   The chapters are arranged according to the mathematical complexity of the analysis, from systems of ordinary linear differential equations, through nonlinear ordinary differential equations, to linear and nonlinear partial differential equations. Many chapters begin with a survey of mathematical techniques needed for the analysis. All problems discussed in this book belong to the class of singularly perturbed problems; that is, problems in which the structure of the limit equation is significantly different from that of the multiscale model. Such problems appear in all areas of science and can be attacked using many techniques.   Methods of Small Parameter in Mathematical Biology will appeal to senior undergraduate and  graduate students in appled and biomathematics, as well as researchers specializing in differential equations and asymptotic analysis. 
650 0 |a Mathematics. 
650 0 |a Differential equations. 
650 0 |a Biomathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Mathematical and Computational Biology. 
650 2 4 |a Genetics and Population Dynamics. 
700 1 |a Lachowicz, Mirosław.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319051390 
830 0 |a Modeling and Simulation in Science, Engineering and Technology,  |x 2164-3679 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-05140-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)