Chemical Optimization Algorithm for Fuzzy Controller Design

In this book, a novel optimization method inspired by a paradigm from nature is introduced. The chemical reactions are used as a paradigm to propose an optimization method that simulates these natural processes. The proposed algorithm is described in detail and then a set of typical complex benchmar...

Full description

Bibliographic Details
Main Authors: Astudillo, Leslie (Author), Melin, Patricia (Author), Castillo, Oscar (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2014.
Series:SpringerBriefs in Applied Sciences and Technology,
Subjects:
Online Access:Full Text via HEAL-Link
Description
Summary:In this book, a novel optimization method inspired by a paradigm from nature is introduced. The chemical reactions are used as a paradigm to propose an optimization method that simulates these natural processes. The proposed algorithm is described in detail and then a set of typical complex benchmark functions is used to evaluate the performance of the algorithm. Simulation results show that the proposed optimization algorithm can outperform other methods in a set of benchmark functions. This chemical reaction optimization paradigm is also applied to solve the tracking problem for the dynamic model of a unicycle mobile robot by integrating a kinematic and a torque controller based on fuzzy logic theory. Computer simulations are presented confirming that this optimization paradigm is able to outperform other optimization techniques applied to this particular robot application.
Physical Description:VIII, 77 p. 32 illus. online resource.
ISBN:9783319052458
ISSN:2191-530X