|
|
|
|
LEADER |
03040nam a22005655i 4500 |
001 |
978-3-319-05245-8 |
003 |
DE-He213 |
005 |
20151204175420.0 |
007 |
cr nn 008mamaa |
008 |
140313s2014 gw | s |||| 0|eng d |
020 |
|
|
|a 9783319052458
|9 978-3-319-05245-8
|
024 |
7 |
|
|a 10.1007/978-3-319-05245-8
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a Q342
|
072 |
|
7 |
|a UYQ
|2 bicssc
|
072 |
|
7 |
|a COM004000
|2 bisacsh
|
082 |
0 |
4 |
|a 006.3
|2 23
|
100 |
1 |
|
|a Astudillo, Leslie.
|e author.
|
245 |
1 |
0 |
|a Chemical Optimization Algorithm for Fuzzy Controller Design
|h [electronic resource] /
|c by Leslie Astudillo, Patricia Melin, Oscar Castillo.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing :
|b Imprint: Springer,
|c 2014.
|
300 |
|
|
|a VIII, 77 p. 32 illus.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a SpringerBriefs in Applied Sciences and Technology,
|x 2191-530X
|
505 |
0 |
|
|a Introduction -- Theory and Background -- Chemical Definitions -- The Proposed Chemical Reaction Algorithm -- Application Problems -- Simulation Results -- Conclusions.
|
520 |
|
|
|a In this book, a novel optimization method inspired by a paradigm from nature is introduced. The chemical reactions are used as a paradigm to propose an optimization method that simulates these natural processes. The proposed algorithm is described in detail and then a set of typical complex benchmark functions is used to evaluate the performance of the algorithm. Simulation results show that the proposed optimization algorithm can outperform other methods in a set of benchmark functions. This chemical reaction optimization paradigm is also applied to solve the tracking problem for the dynamic model of a unicycle mobile robot by integrating a kinematic and a torque controller based on fuzzy logic theory. Computer simulations are presented confirming that this optimization paradigm is able to outperform other optimization techniques applied to this particular robot application.
|
650 |
|
0 |
|a Engineering.
|
650 |
|
0 |
|a Chemistry, Physical and theoretical.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Computational intelligence.
|
650 |
|
0 |
|a Control engineering.
|
650 |
|
0 |
|a Robotics.
|
650 |
|
0 |
|a Automation.
|
650 |
1 |
4 |
|a Engineering.
|
650 |
2 |
4 |
|a Computational Intelligence.
|
650 |
2 |
4 |
|a Control.
|
650 |
2 |
4 |
|a Theoretical and Computational Chemistry.
|
650 |
2 |
4 |
|a Robotics and Automation.
|
650 |
2 |
4 |
|a Artificial Intelligence (incl. Robotics).
|
700 |
1 |
|
|a Melin, Patricia.
|e author.
|
700 |
1 |
|
|a Castillo, Oscar.
|e author.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319052441
|
830 |
|
0 |
|a SpringerBriefs in Applied Sciences and Technology,
|x 2191-530X
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-3-319-05245-8
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-ENG
|
950 |
|
|
|a Engineering (Springer-11647)
|