Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems FVCA 7, Berlin, June 2014 /

The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications. The second volume of the proceedings covers reviewed contributions reporting successful applications i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Fuhrmann, Jürgen (Επιμελητής έκδοσης), Ohlberger, Mario (Επιμελητής έκδοσης), Rohde, Christian (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Springer Proceedings in Mathematics & Statistics, 78
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03468nam a22005295i 4500
001 978-3-319-05591-6
003 DE-He213
005 20151204172222.0
007 cr nn 008mamaa
008 140516s2014 gw | s |||| 0|eng d
020 |a 9783319055916  |9 978-3-319-05591-6 
024 7 |a 10.1007/978-3-319-05591-6  |2 doi 
040 |d GrThAP 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
245 1 0 |a Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems  |h [electronic resource] :  |b FVCA 7, Berlin, June 2014 /  |c edited by Jürgen Fuhrmann, Mario Ohlberger, Christian Rohde. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XVIII, 518 p. 163 illus., 80 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 78 
520 |a The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications. The second volume of the proceedings covers reviewed contributions reporting successful applications in the fields of fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory and other topics. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. Researchers, PhD and masters level students in numerical analysis, scientific computing and related fields such as partial differential equations will find this volume useful, as will engineers working in numerical modeling and simulations. 
650 0 |a Mathematics. 
650 0 |a Computer simulation. 
650 0 |a Partial differential equations. 
650 0 |a Numerical analysis. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Numerical and Computational Physics. 
650 2 4 |a Simulation and Modeling. 
650 2 4 |a Partial Differential Equations. 
700 1 |a Fuhrmann, Jürgen.  |e editor. 
700 1 |a Ohlberger, Mario.  |e editor. 
700 1 |a Rohde, Christian.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319055909 
830 0 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 78 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-05591-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)