Lobachevsky Geometry and Modern Nonlinear Problems

This monograph presents the basic concepts of hyperbolic Lobachevsky geometry and their possible applications to modern nonlinear applied problems in mathematics and physics, summarizing the findings of roughly the last hundred years. The central sections cover the classical building blocks of hyper...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Popov, Andrey (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02956nam a22004575i 4500
001 978-3-319-05669-2
003 DE-He213
005 20151204155449.0
007 cr nn 008mamaa
008 140806s2014 gw | s |||| 0|eng d
020 |a 9783319056692  |9 978-3-319-05669-2 
024 7 |a 10.1007/978-3-319-05669-2  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 |a Popov, Andrey.  |e author. 
245 1 0 |a Lobachevsky Geometry and Modern Nonlinear Problems  |h [electronic resource] /  |c by Andrey Popov. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a VIII, 310 p. 103 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- 1 Foundations of Lobachevsky geometry: axiomatics, models, images in Euclidean space -- 2 The problem of realizing the Lobachevsky geometry in Euclidean space -- 3 The sine-Gordon equation: its geometry and applications of current interest -- 4 Lobachevsky geometry and nonlinear equations of mathematical physics -- 5 Non-Euclidean phase spaces. Discrete nets on the Lobachevsky plane and numerical integration algorithms for Λ2-equations -- Bibliography -- Index. 
520 |a This monograph presents the basic concepts of hyperbolic Lobachevsky geometry and their possible applications to modern nonlinear applied problems in mathematics and physics, summarizing the findings of roughly the last hundred years. The central sections cover the classical building blocks of hyperbolic Lobachevsky geometry, pseudo spherical surfaces theory, net geometrical investigative techniques of nonlinear differential equations in partial derivatives, and their applications to the analysis of the physical models. As the sine-Gordon equation appears to have profound “geometrical roots” and numerous applications to modern nonlinear problems, it is treated as a universal “object” of investigation, connecting many of the problems discussed. The aim of this book is to form a general geometrical view on the different problems of modern mathematics, physics and natural science in general in the context of non-Euclidean hyperbolic geometry. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Partial differential equations. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Mathematical Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319056685 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-05669-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)