A Mathematical Prelude to the Philosophy of Mathematics

This book is based on two premises: one cannot understand philosophy of mathematics without understanding mathematics and one cannot understand mathematics without doing mathematics. It draws readers into philosophy of mathematics by having them do mathematics. It offers 298 exercises, covering phil...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Pollard, Stephen (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02582nam a22004335i 4500
001 978-3-319-05816-0
003 DE-He213
005 20151121020818.0
007 cr nn 008mamaa
008 140512s2014 gw | s |||| 0|eng d
020 |a 9783319058160  |9 978-3-319-05816-0 
024 7 |a 10.1007/978-3-319-05816-0  |2 doi 
040 |d GrThAP 
050 4 |a B67 
072 7 |a PDA  |2 bicssc 
072 7 |a SCI075000  |2 bisacsh 
082 0 4 |a 501  |2 23 
100 1 |a Pollard, Stephen.  |e author. 
245 1 2 |a A Mathematical Prelude to the Philosophy of Mathematics  |h [electronic resource] /  |c by Stephen Pollard. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XI, 202 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Chapter 1: Recursion, Induction -- Chapter 2: Peano Arithmetic, Incompleteness -- Chapter 3: Hereditarily Finite Lists -- Chapter 4: Zermelian Lists -- Chapter 5: The Hierarchy of Sets. Chapter 6: Frege Arithmetic -- Chapter 7: Intuitionist Logic -- Chapter 8. Solutions of Odd-Numbered Exercises -- Index. 
520 |a This book is based on two premises: one cannot understand philosophy of mathematics without understanding mathematics and one cannot understand mathematics without doing mathematics. It draws readers into philosophy of mathematics by having them do mathematics. It offers 298 exercises, covering philosophically important material, presented in a philosophically informed way. The exercises give readers opportunities to recreate some mathematics that will illuminate important readings in philosophy of mathematics. Topics include primitive recursive arithmetic, Peano arithmetic, Gödel's theorems, interpretability, the hierarchy of sets, Frege arithmetic, and intuitionist sentential logic. The book is intended for readers who understand basic properties of the natural and real numbers and have some background in formal logic. 
650 0 |a Philosophy. 
650 0 |a Philosophy and science. 
650 0 |a Mathematical logic. 
650 1 4 |a Philosophy. 
650 2 4 |a Philosophy of Science. 
650 2 4 |a Mathematical Logic and Foundations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319058153 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-05816-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SHU 
950 |a Humanities, Social Sciences and Law (Springer-11648)