Consequences of Combinatorial Studies of Positive Electrodes for Li-ion Batteries

Li-Co-Mn-Ni oxides have been of extreme interest as potential positive electrode materials for next generation Li-ion batteries.  Though many promising materials have been discovered and studied extensively, much debate remains in the literature about the structures of these materials.  There is no...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: McCalla, Eric (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Περιγραφή
Περίληψη:Li-Co-Mn-Ni oxides have been of extreme interest as potential positive electrode materials for next generation Li-ion batteries.  Though many promising materials have been discovered and studied extensively, much debate remains in the literature about the structures of these materials.  There is no consensus as to whether the lithium-rich layered materials are single-phase or form a layered-layered composite on the few nanometer length-scales.  Much of this debate came about because no phase diagrams existed to describe these systems under the synthesis conditions used to make electrode materials.  Detailed in this thesis are the complete Li-Co-Mn-O and Li-Mn-Ni-O phase diagrams generated by way of the combinatorial synthesis of mg-scale samples at over five hundred compositions characterized with X-ray diffraction.  Selected bulk samples were used to confirm that the findings are relevant to synthesis conditions used commercially.  The results  help resolve a number of points of confusion and contradiction in the literature.  Amongst other important findings, the compositions and synthesis conditions giving rise to layered-layered nano-composites are presented and electrochemical results are used to show how better electrode materials can be achieved by making samples in the single phase-layered regions.
Φυσική περιγραφή:XXXV, 146 p. 103 illus., 63 illus. in color. online resource.
ISBN:9783319058498
ISSN:2190-5053