Critical Phenomena in Loop Models

When close to a continuous phase transition, many physical systems can usefully be mapped to ensembles of fluctuating loops, which might represent for example polymer rings, or line defects in a lattice magnet, or worldlines of quantum particles. 'Loop models' provide a unifying geometric...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Nahum, Adam (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03198nam a22005055i 4500
001 978-3-319-06407-9
003 DE-He213
005 20151103122046.0
007 cr nn 008mamaa
008 141001s2015 gw | s |||| 0|eng d
020 |a 9783319064079  |9 978-3-319-06407-9 
024 7 |a 10.1007/978-3-319-06407-9  |2 doi 
040 |d GrThAP 
050 4 |a QC5.53 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Nahum, Adam.  |e author. 
245 1 0 |a Critical Phenomena in Loop Models  |h [electronic resource] /  |c by Adam Nahum. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XVII, 141 p. 38 illus., 36 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Introduction -- Completely Packed Loop Models -- Topological Terms, Quantum Magnets and Deconfined Criticality -- The Statistics of Vortex Lines -- Loop Models with Crossings in 2D -- Polymer Collapse -- Outlook -- Appendix A Potts domain walls and CP^{n-1} -- Appendix B Phases for Hedgehogs & Vortices. 
520 |a When close to a continuous phase transition, many physical systems can usefully be mapped to ensembles of fluctuating loops, which might represent for example polymer rings, or line defects in a lattice magnet, or worldlines of quantum particles. 'Loop models' provide a unifying geometric language for problems of this kind. This thesis aims to extend this language in two directions. The first part of the thesis tackles ensembles of loops in three dimensions, and relates them to the statistical properties of line defects in disordered media and to critical phenomena in two-dimensional quantum magnets. The second part concerns two-dimensional loop models that lie outside the standard paradigms: new types of critical point are found, and new results given for the universal properties of polymer collapse transitions in two dimensions. All of these problems are shown to be related to sigma models on complex or real projective space, CP^{n−1} or RP^{n−1} -- in some cases in a 'replica' limit -- and this thesis is also an in-depth investigation of critical behaviour in these field theories. 
650 0 |a Physics. 
650 0 |a Mathematical physics. 
650 0 |a Condensed matter. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 1 4 |a Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
650 2 4 |a Condensed Matter Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319064062 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-06407-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)