Lattice Theory: Special Topics and Applications Volume 1 /

George Grätzer's Lattice Theory: Foundation is his third book on lattice theory (General Lattice Theory, 1978, second edition, 1998). In 2009, Grätzer considered updating the second edition to reflect some exciting and deep developments. He soon realized that to lay the foundation, to survey th...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Grätzer, George (Επιμελητής έκδοσης), Wehrung, Friedrich (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03272nam a22004455i 4500
001 978-3-319-06413-0
003 DE-He213
005 20151204154908.0
007 cr nn 008mamaa
008 140827s2014 gw | s |||| 0|eng d
020 |a 9783319064130  |9 978-3-319-06413-0 
024 7 |a 10.1007/978-3-319-06413-0  |2 doi 
040 |d GrThAP 
050 4 |a QA172-172.4 
050 4 |a QA171.5 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 511.33  |2 23 
245 1 0 |a Lattice Theory: Special Topics and Applications  |h [electronic resource] :  |b Volume 1 /  |c edited by George Grätzer, Friedrich Wehrung. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a XIII, 468 p. 78 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction. Part I Topology and Lattices -- Chapter 1. Continuous and Completely Distributive Lattices -- Chapter 2. Frames: Topology Without Points -- Part II. Special Classes of Finite Lattices -- Chapter 3. Planar Semi modular Lattices: Structure and Diagram -- Chapter 4. Planar Semi modular Lattices: Congruences -- Chapter 5. Sectionally Complemented Lattices -- Chapter 6. Combinatorics in finite lattices -- Part III. Congruence Lattices of Infinite Lattices and Beyond -- Chapter 7. Schmidt and Pudlák's Approaches to CLP -- Chapter 8. Congruences of lattices and ideals of rings -- Chapter 9. Liftable and Unliftable Diagrams -- Chapter 10. Two topics related to congruence lattices of lattices. 
520 |a George Grätzer's Lattice Theory: Foundation is his third book on lattice theory (General Lattice Theory, 1978, second edition, 1998). In 2009, Grätzer considered updating the second edition to reflect some exciting and deep developments. He soon realized that to lay the foundation, to survey the contemporary field, to pose research problems, would require more than one volume and more than one person. So Lattice Theory: Foundation provided the foundation. Now we complete this project with Lattice Theory: Special Topics and Applications, written by a distinguished group of experts, to cover some of the vast areas not in Foundation. This first volume is divided into three parts. Part I. Topology and Lattices includes two chapters by Klaus Keimel, Jimmie Lawson and Ales Pultr, Jiri Sichler. Part II. Special Classes of Finite Lattices comprises four chapters by Gabor Czedli, George Grätzer and Joseph P. S. Kung. Part III. Congruence Lattices of Infinite Lattices and Beyond includes four chapters by Friedrich Wehrung and George Grätzer. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Ordered algebraic structures. 
650 1 4 |a Mathematics. 
650 2 4 |a Order, Lattices, Ordered Algebraic Structures. 
700 1 |a Grätzer, George.  |e editor. 
700 1 |a Wehrung, Friedrich.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319064123 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-06413-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)